Pytorch Tutorial【Chapter 2. Autograd】

这篇具有很好参考价值的文章主要介绍了Pytorch Tutorial【Chapter 2. Autograd】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Pytorch Tutorial

Chapter 2. Autograd

1. Review Matrix Calculus

1.1 Definition向量对向量求导

​ Define the derivative of a function mapping f : R n → R m f:\mathbb{R}^n\to\mathbb{R}^m f:RnRm as the n × m n\times m n×m matrix of partial derivatives. That is, if x ∈ R n , f ( x ) ∈ R m x\in\mathbb{R}^n,f(x)\in\mathbb{R}^m xRn,f(x)Rm, the derivative of f f f with respect to x x x is defined as
[ ∂ f ∂ x ] i j = ∂ f i ∂ x i \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}_{ij} = \frac{\partial f_i}{\partial x_i} [xf]ij=xifi
Let
x = [ x 1 x 2 ⋮ x n ] , f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f m ( x ) ] x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix} x= x1x2xn ,f(x)= f1(x)f2(x)fm(x)

then we define the Jacobian Matrix

∂ f ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 2 ∂ x 1 ⋯ ∂ f m ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 2 ⋯ ∂ f m ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ f 1 ∂ x n ∂ f 2 ∂ x n ⋯ ∂ f m ∂ x n ] \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \\ \end{bmatrix} xf= x1f1x2f1xnf1x1f2x2f2xnf2x1fmx2fmxnfm

1.2 Definition标量对向量求导

If f f f is scalar, one has

∂ f ∂ x = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \\ \end{bmatrix} xf= x1fx2fxnf
这其实是一种分母布局

1.3 Definition标量对矩阵求导

​ Now we give some results on the derivative of scalar functions of a matrix. Let X = [ x i j ] X=[x_{ij}] X=[xij] be a matrix of order m × n m\times n m×n and let y = f ( X ) y=f(X) y=f(X) be a scalar function of X X X. The derivative of y y y with respect to X X X, denoted by ∂ y ∂ X \frac{\partial y}{\partial X} Xy, is defined as the following matrix of order m × n m\times n m×n,
G = ∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 12 ⋯ ∂ y ∂ x 1 n ∂ y ∂ x 21 ∂ y ∂ x 22 ⋯ ∂ y ∂ x 2 n ⋮ ⋮ ⋱ ⋮ ∂ y ∂ x m 1 ∂ y ∂ x m 2 ⋯ ∂ y ∂ x m n ] = [ ∂ y ∂ x i j ] G = \frac{\partial y}{\partial X} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1n}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2n}} \\ \vdots & \vdots & \ddots & \vdots& \\ \frac{\partial y}{\partial x_{m1}} & \frac{\partial y}{\partial x_{m2}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{bmatrix} = \Big[\frac{\partial y}{\partial x_{ij}} \Big] G=Xy= x11yx21yxm1yx12yx22yxm2yx1nyx2nyxmny =[xijy]

2.关于autograd的说明

torch.Tensor 是包的核心类。如果将其属性 tensor.requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后,您可以调用 tensor.backward() 来自动计算所有梯度。该张量的梯度将累积到 tensor.grad 属性中。

要停止 tensor 历史记录的跟踪,您可以调用 tensor.detach(),它将其与计算历史记录分离,并防止将来的计算被跟踪。

要停止跟踪历史记录(和使用内存),您还可以将代码块使用 with torch.no_grad(): 包装起来。在评估模型时,这是特别有用,因为模型在训练阶段具有 requires_grad = True 的可训练参数有利于调参,但在评估阶段我们不需要梯度。

还有一个类对于 autograd 实现非常重要那就是 FunctionTensorFunction 互相连接并构建一个非循环图,它保存整个完整的计算过程的历史信息。每个张量都有一个 tensor.grad_fn 属性保存着创建了张量的 Function 的引用,(如果用户自己创建张量,则 grad_fn=None)。

如果你想计算导数,你可以调用 tensor.backward()如果 Tensor 是标量(即它包含一个元素数据),则不需要指定任何参数backward(),但是如果它有更多元素,则需要指定一个gradient 参数来指定张量的形状。

最后的计算结果保存在tensor.grad属性里

  • 使用tensor.requires_grad在初始化时,设置跟踪梯度
import torch
import numpy as np
x = torch.ones(2,2, requires_grad=True)
print(x)

结果如下

tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
  • 设置了跟踪梯度的tensor,将会出现tensor.grad_fn的属性,用于记录上次计算的Function
y = torch.add(x, 1)
print(y)
print(y.grad_fn)

结果如下

tensor([[2., 2.],
        [2., 2.]], grad_fn=<AddBackward0>)
<AddBackward0 object at 0x0000020D723EBE80>
  • tensor.requires_grad_(True / False) 会改变张量的 requires_grad 标记。 如果没有提供相应的参数输入的标记默认为 False。
a = torch.randn(2,2)
a = (a * 3) / (a-1)
print(a)
a.requires_grad_(True)
print(a)
a = a + 1
print(a)
tensor([[  0.0646, -46.3478],
        [  5.6683,  -0.8896]])
tensor([[  0.0646, -46.3478],
        [  5.6683,  -0.8896]], requires_grad=True)
tensor([[  1.0646, -45.3478],
        [  6.6683,   0.1104]], grad_fn=<AddBackward0>)

3. grad的计算

3.1 Manual手动计算
  • 可以使用函数torch.autograd.grad()来手动计算梯度,详细可参考此处
Pytorch Tutorial【Chapter 2. Autograd】,pytorch学习,pytorch,人工智能,python

例如计算 y = x 1 2 + x 2 2 + x 1 x 2 y = x_1^2 + x_2^2 + x_1x_2 y=x12+x22+x1x2的梯度

x1 = torch.tensor(3., requires_grad=True)
x2 = torch.tensor(1., requires_grad=True)
y = x1**2+x2**2+x1*x2

# 求一阶导数
# torch.autograd.grad(y, x1,retain_graph=True, create_graph=True)
x1_1 = torch.autograd.grad(y, x1, retain_graph=True, create_graph=True)[0]
x2_1 = torch.autograd.grad(y, x2, retain_graph=True, create_graph=True)[0]
print(x1_1,x2_1)

# 求二阶混合偏导数
x1_11 = torch.autograd.grad(x1_1, x1)[0]
x1_12 = torch.autograd.grad(x1_1, x2)[0]
x2_21 = torch.autograd.grad(x2_1, x1)[0]
x2_22 = torch.autograd.grad(x2_1, x2)[0]
print(x1_11,x1_12,x2_21,x2_22)

结果如下

tensor(7., grad_fn=<AddBackward0>) tensor(5., grad_fn=<AddBackward0>)
tensor(2.) tensor(1.) tensor(1.) tensor(2.)
3.2 backward()自动计算

当输出是标量scalar函数时
考虑如下的计算问题

x = torch.ones(2,2, requires_grad=True)
y = x + 2
print(y)
z = y * y * 3
out = z.mean()
print(z, out)  #输出out是一个标量
out.backward()
print(x.grad)

输出是

tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)
tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

X = [ x 1 x 2 x 3 x 4 ] = [ 1 1 1 1 ] X =\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} X=[x1x3x2x4]=[1111]

中间变量是

Z = [ z 1 z 2 z 3 z 4 ] = [ 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 3 ( x 1 + 2 ) 2 ] Z =\begin{bmatrix} z_1 & z_2 \\ z_3 & z_4 \end{bmatrix} = \begin{bmatrix} 3(x_1+2)^2 & 3(x_1+2)^2 \\ 3(x_1+2)^2 & 3(x_1+2)^2 \end{bmatrix} Z=[z1z3z2z4]=[3(x1+2)23(x1+2)23(x1+2)23(x1+2)2]

最后获得是输出是

out = 1 4 ∑ i = 1 z i = 1 4 ( z 1 + z 2 + z 3 + z 4 ) = 1 4 ( 3 ( x 1 + 2 ) 2 + 3 ( x 2 + 2 ) 2 + 3 ( x 3 + 2 ) 2 + 3 ( x 4 + 2 ) 2 ) = f ( x ) \begin{aligned} \text{out} & = \frac{1}{4}\sum_{i=1} z_i = \frac{1}{4}(z_1+z_2+z_3+z_4) \\ & = \frac{1}{4}(3(x_1+2)^2+3(x_2+2)^2+3(x_3+2)^2+3(x_4+2)^2) \\ & = f(\mathrm{x}) \end{aligned} out=41i=1zi=41(z1+z2+z3+z4)=41(3(x1+2)2+3(x2+2)2+3(x3+2)2+3(x4+2)2)=f(x)

其中将矩阵 X X X和矩阵 Z Z Z中的所有元素拼接为向量

x = [ x 1 , x 2 , x 3 , x 4 ] T z = [ z 1 , z 2 , z 3 , z 4 ] T \mathrm{x} = [x_1,x_2,x_3,x_4]^T \\ \mathrm{z} = [z_1,z_2,z_3,z_4]^T x=[x1,x2,x3,x4]Tz=[z1,z2,z3,z4]T

我们利用矩阵求导的链式法则

∂ f ∂ x = f ( x ) ∂ x = ∂ z ∂ x ∂ f ( x ) ∂ z \frac{\partial f}{\partial \mathrm{x}} = \frac{f(\mathrm{x})}{\partial \mathrm{x}} = \frac{\partial \mathrm{z}}{\partial \mathrm{x}} \frac{\partial f(\mathrm{x})}{\partial \mathrm{z}} xf=xf(x)=xzzf(x)

再利用标量函数对矩阵导数的定义,则有

∂ f ∂ x = [ ∂ z 1 ∂ x 1 ∂ z 2 ∂ x 1 ∂ z 3 ∂ x 1 ∂ z 4 ∂ x 1 ∂ z 1 ∂ x 2 ∂ z 2 ∂ x 2 ∂ z 3 ∂ x 2 ∂ z 4 ∂ x 2 ∂ z 1 ∂ x 3 ∂ z 2 ∂ x 3 ∂ z 3 ∂ x 3 ∂ z 4 ∂ x 3 ∂ z 1 ∂ x 4 ∂ z 2 ∂ x 4 ∂ z 3 ∂ x 4 ∂ z 4 ∂ x 4 ] [ ∂ f ∂ z 1 ∂ f ∂ z 2 ∂ f ∂ z 3 ∂ f ∂ z 4 ] = [ 6 ( x 1 + 2 ) 0 0 0 0 6 ( x 2 + 2 ) 0 0 0 0 6 ( x 3 + 2 ) 0 0 0 0 6 ( x 4 + 2 ) ] [ 1 4 1 4 1 4 1 4 ] = [ 4.5 4.5 4.5 4.5 ] \frac{\partial f}{\partial \mathrm{x}} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_2}{\partial x_1} & \frac{\partial z_3}{\partial x_1} & \frac{\partial z_4}{\partial x_1} \\ \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} & \frac{\partial z_3}{\partial x_2} & \frac{\partial z_4}{\partial x_2} \\ \frac{\partial z_1}{\partial x_3} & \frac{\partial z_2}{\partial x_3} & \frac{\partial z_3}{\partial x_3} & \frac{\partial z_4}{\partial x_3} \\ \frac{\partial z_1}{\partial x_4} & \frac{\partial z_2}{\partial x_4} & \frac{\partial z_3}{\partial x_4} & \frac{\partial z_4}{\partial x_4} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial z_1} \\ \frac{\partial f}{\partial z_2} \\ \frac{\partial f}{\partial z_3} \\ \frac{\partial f}{\partial z_4} \end{bmatrix}= \begin{bmatrix} 6(x_1+2) & 0 & 0 & 0 \\ 0 & 6(x_2+2) & 0 & 0 \\ 0 & 0 & 6(x_3+2) & 0 \\ 0 & 0 & 0 & 6(x_4+2) \end{bmatrix} \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ \end{bmatrix} xf= x1z1x2z1x3z1x4z1x1z2x2z2x3z2x4z2x1z3x2z3x3z3x4z3x1z4x2z4x3z4x4z4 z1fz2fz3fz4f = 6(x1+2)00006(x2+2)00006(x3+2)00006(x4+2) 41414141 = 4.54.54.54.5

所以最后获得关于的矩阵 X X X的导数为

∂ f ∂ X = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 ∂ f ∂ x 4 ] = [ 4.5 4.5 4.5 4.5 ] \frac{\partial f}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} & \frac{\partial f}{\partial x_4} \end{bmatrix} = \begin{bmatrix} 4.5 & 4.5 \\ 4.5 & 4.5 \\ \end{bmatrix} Xf=[x1fx3fx2fx4f]=[4.54.54.54.5]

当输出是张量tensor函数时

x = torch.tensor([[1.0, 2, 3],[4, 5, 6],[7, 8, 9]], requires_grad=True)
w = torch.tensor([[1.0, 2, 3],[4, 5, 6]], requires_grad=True)

y = torch.matmul(x,w.T)
print(y)
print(torch.ones_like(y))
y.backward(gradient = torch.ones_like(y))
print(x.grad)

输出是

tensor([[ 14.,  32.],
        [ 32.,  77.],
        [ 50., 122.]], grad_fn=<MmBackward0>)
tensor([[1., 1.],
        [1., 1.],
        [1., 1.]])
tensor([[5., 7., 9.],
        [5., 7., 9.],
        [5., 7., 9.]])

Y = X W T [ y 11 y 21 y 12 y 22 y 13 y 23 ] = [ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ] [ w 11 w 21 w 12 w 22 w 13 w 23 ] [ y 11 y 21 y 12 y 22 y 13 y 23 ] = [ ( x 11 w 11 + x 12 w 12 + x 13 w 13 ) ( x 11 w 21 + x 12 w 22 + x 13 w 23 ) ( x 21 w 11 + x 22 w 12 + x 23 w 13 ) ( x 21 w 21 + x 22 w 22 + x 23 w 23 ) ( x 31 w 11 + x 32 w 12 + x 33 w 13 ) ( x 31 w 21 + x 32 w 22 + x 33 w 23 ) ] Y = XW^T \\ \begin{bmatrix} y_{11} & y_{21} \\ y_{12} & y_{22} \\ y_{13} & y_{23} \\ \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ \end{bmatrix} \begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \\ \end{bmatrix} \\ \begin{bmatrix} y_{11} & y_{21} \\ y_{12} & y_{22} \\ y_{13} & y_{23} \\ \end{bmatrix} = \begin{bmatrix} (x_{11}w_{11} + x_{12}w_{12} + x_{13}w_{13}) & (x_{11}w_{21} + x_{12}w_{22} + x_{13}w_{23}) \\ (x_{21}w_{11} + x_{22}w_{12} + x_{23}w_{13}) & (x_{21}w_{21} + x_{22}w_{22} + x_{23}w_{23}) \\ (x_{31}w_{11} + x_{32}w_{12} + x_{33}w_{13}) & (x_{31}w_{21} + x_{32}w_{22} + x_{33}w_{23}) \\ \end{bmatrix} Y=XWT y11y12y13y21y22y23 = x11x21x31x12x22x32x13x23x33 w11w12w13w21w22w23 y11y12y13y21y22y23 = (x11w11+x12w12+x13w13)(x21w11+x22w12+x23w13)(x31w11+x32w12+x33w13)(x11w21+x12w22+x13w23)(x21w21+x22w22+x23w23)(x31w21+x32w22+x33w23)

gradient=torch.ones_like(y)用于指定矩阵 Y Y Y中每一项的权重都为1,由矩阵 Y Y Y中元素加权得到的scalar函数为

f ( x , w ) = 1 × y 11 + 1 × y 12 + 1 × y 13 + 1 × y 21 + 1 × y 22 + 1 × y 23 , x = [ x 11 , x 12 , x 13 , x 21 , x 22 , x 23 , x 31 , x 32 , x 33 ] T w = [ w 11 , w 12 , w 13 , w 21 , w 22 , w 23 , w 31 , w 32 , w 33 ] T \begin{aligned} f(\mathrm{x},\mathrm{w}) & = 1\times y_{11}+1\times y_{12}+1\times y_{13}+1\times y_{21}+1\times y_{22}+1\times y_{23}, \\ & \mathrm{x} = [x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}]^T \\ & \mathrm{w} = [w_{11}, w_{12}, w_{13}, w_{21}, w_{22}, w_{23}, w_{31}, w_{32}, w_{33}]^T \end{aligned} f(x,w)=1×y11+1×y12+1×y13+1×y21+1×y22+1×y23,x=[x11,x12,x13,x21,x22,x23,x31,x32,x33]Tw=[w11,w12,w13,w21,w22,w23,w31,w32,w33]T

这里不包括复合求导,可以直接计算

∂ f ∂ x = [ ∂ f ∂ x 11 , ∂ f ∂ x 12 , ∂ f ∂ x 13 , ∂ f ∂ x 21 , ∂ f ∂ x 22 , ∂ f ∂ x 23 , ∂ f ∂ x 31 , ∂ f ∂ x 32 , ∂ f ∂ x 33 ] T ∂ f ∂ x = [ w 11 + w 21 , w 12 + w 22 , w 13 + w 23 , w 11 + w 21 , w 12 + w 22 , w 13 + w 23 , w 11 + w 21 , w 12 + w 22 , w 13 + w 23 ] T = [ 5 , 7 , 9 , 5 , 7 , 9 , 5 , 7 , 9 ] T \begin{aligned} \frac{\partial f}{\partial \mathrm{x}} & = \Big[\frac{\partial f}{\partial x_{11}}, \frac{\partial f}{\partial x_{12}}, \frac{\partial f}{\partial x_{13}}, \frac{\partial f}{\partial x_{21}}, \frac{\partial f}{\partial x_{22}}, \frac{\partial f}{\partial x_{23}}, \frac{\partial f}{\partial x_{31}}, \frac{\partial f}{\partial x_{32}}, \frac{\partial f}{\partial x_{33}} \Big]^T \\ \frac{\partial f}{\partial \mathrm{x}} & = \Big[ w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23}, w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23}, w_{11} + w_{21}, w_{12} + w_{22}, w_{13} + w_{23} \Big]^T \\ & = [5, 7, 9, 5, 7, 9, 5, 7, 9]^T \end{aligned} xfxf=[x11f,x12f,x13f,x21f,x22f,x23f,x31f,x32f,x33f]T=[w11+w21,w12+w22,w13+w23,w11+w21,w12+w22,w13+w23,w11+w21,w12+w22,w13+w23]T=[5,7,9,5,7,9,5,7,9]T
再写成矩阵的形式则有

∂ f ∂ X = [ 5 7 9 5 7 9 5 7 9 ] \frac{\partial f}{\partial X} = \begin{bmatrix} 5 & 7 & 9 \\ 5 & 7 & 9 \\ 5 & 7 & 9 \\ \end{bmatrix} Xf= 555777999

再考虑一个更一般求二阶导的情况

x = torch.ones(3, requires_grad=True)
print(x)
y = x * 2
print(y)
z = y * 2
print(z)
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
z.backward(gradient=v)
print(x.grad)

结果如下

tensor([1., 1., 1.], requires_grad=True)
tensor([2., 2., 2.], grad_fn=<MulBackward0>)
tensor([4., 4., 4.], grad_fn=<MulBackward0>)
tensor([4.0000e-01, 4.0000e+00, 4.0000e-04])

其中
x = [ x 1 , x 2 , x 3 ] T = [ 1 , 1 , 1 ] T y = 2 x = [ y 1 , y 2 , y 3 ] T = [ 2 , 2 , 2 ] T z = 2 y = [ z 1 , z 2 , z 3 ] T = [ 4 , 4 , 4 ] T \begin{aligned} \mathrm{x} & = [x_1,x_2,x_3]^T = [1,1,1]^T \\ \mathrm{y} = 2\mathrm{x} & = [y_1,y_2,y_3]^T = [2,2,2]^T \\ \mathrm{z} = 2\mathrm{y} & = [z_1,z_2,z_3]^T = [4,4,4]^T \end{aligned} xy=2xz=2y=[x1,x2,x3]T=[1,1,1]T=[y1,y2,y3]T=[2,2,2]T=[z1,z2,z3]T=[4,4,4]T
若考虑gradient=torch.tensor([a1,a2,a3], dtype=torch.folat),那么最终加权得到的scalar函数为
f = a 1 z 1 + a 2 z 2 + a 3 z 3 f = a_1 z_1 + a_2 z_2 + a_3 z_3 f=a1z1+a2z2+a3z3
那么对 x \mathrm{x} x求偏导则有
∂ f ∂ x = ∂ y ∂ x ∂ f ∂ y = [ ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 1 ∂ y 3 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 2 ∂ x 2 ∂ y 3 ∂ x 2 ∂ y 1 ∂ x 3 ∂ y 2 ∂ x 3 ∂ y 3 ∂ x 3 ] [ ∂ f ∂ y 1 ∂ f ∂ y 2 ∂ f ∂ y 3 ] = [ 2 2 2 ] [ 2 a 1 2 a 2 2 a 3 ] = [ 4 a 1 , 4 a 2 , 4 a 3 ] T \begin{aligned} \frac{\partial f}{\partial \mathrm{x}} & = \frac{\partial \mathrm{y}}{\partial \mathrm{x}} \frac{\partial f}{\partial \mathrm{y}} \\ & = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_3}{\partial x_2} \\ \frac{\partial y_1}{\partial x_3} & \frac{\partial y_2}{\partial x_3} & \frac{\partial y_3}{\partial x_3} \\ \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial y_1} \\ \frac{\partial f}{\partial y_2} \\ \frac{\partial f}{\partial y_3} \\ \end{bmatrix} \\ & = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix} \begin{bmatrix} 2 a_1 \\ 2 a_2 \\ 2 a_3 \\ \end{bmatrix} \\ & = [4a_1, 4a_2, 4a_3]^T \end{aligned} xf=xyyf= x1y1x2y1x3y1x1y2x2y2x3y2x1y3x2y3x3y3 y1fy2fy3f = 222 2a12a22a3 =[4a1,4a2,4a3]T

一些启示

Pytorch Tutorial【Chapter 2. Autograd】,pytorch学习,pytorch,人工智能,python

Reference

参考教程1
参考教程2文章来源地址https://www.toymoban.com/news/detail-624954.html

到了这里,关于Pytorch Tutorial【Chapter 2. Autograd】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能概论报告-基于PyTorch的深度学习手写数字识别模型研究与实践

    本文是我人工智能概论的课程大作业实践应用报告,可供各位同学参考,内容写的及其水,部分也借助了gpt自动生成,排版等也基本做好,大家可以参照。如果有需要word版的可以私信我,或者在评论区留下邮箱,我会逐个发给。word版是我最后提交的,已经调整统一了全文格

    2024年02月05日
    浏览(69)
  • 人工智能学习07--pytorch20--目标检测:COCO数据集介绍+pycocotools简单使用

    如:天空 coco包含pascal voc 的所有类别,并且对每个类别的标注目标个数也比pascal voc的多。 一般使用coco数据集预训练好的权重来迁移学习。 如果仅仅针对目标检测object80类而言,有些图片并没有标注信息,或者有错误标注信息。所以在实际的训练过程中,需要对这些数据进行

    2024年02月12日
    浏览(61)
  • 人工智能深度学习100种网络模型,精心整理,全网最全,PyTorch框架逐一搭建

    大家好,我是微学AI,今天给大家介绍一下人工智能深度学习100种网络模型,这些模型可以用PyTorch深度学习框架搭建。模型按照个人学习顺序进行排序: 深度学习模型 ANN (Artificial Neural Network) - 人工神经网络:基本的神经网络结构,包括输入层、隐藏层和输出层。 学习点击地

    2024年02月14日
    浏览(50)
  • 人工智能学习07--pytorch21--目标检测:YOLO系列理论合集(YOLOv1~v3)

    如果直接看yolov3论文的话,会发现有好多知识点没见过,所以跟着视频从头学一下。 学习up主霹雳吧啦Wz大佬的学习方法: 想学某个网络的代码时: 到网上搜这个网络的讲解 → 对这个网络大概有了印象 → 读论文原文 ( 很多细节都要依照原论文来实现, 自己看原论文十分

    2024年02月10日
    浏览(68)
  • 人工智能学习07--pytorch23--目标检测:Deformable-DETR训练自己的数据集

    1、pytorch conda create -n deformable_detr python=3.9 pip 2、激活环境 conda activate deformable_detr 3、torch 4、其他的库 pip install -r requirements.txt 5、编译CUDA cd ./models/ops sh ./make.sh #unit test (should see all checking is True) python test.py (我没运行这一步) 主要是MultiScaleDeformableAttention包,如果中途换了

    2024年02月14日
    浏览(131)
  • **PyTorch月学习计划 - 第一周;第6-7天: 自动梯度(Autograd)**

    PyTorch月学习计划 - 第6-7天: 自动梯度(Autograd) 学习目标: 掌握自动微分的基本原理,特别是在深度学习中的应用。 学会如何在PyTorch中使用autograd模块进行自动梯度计算。 学习内容: 自动微分和计算图的概念 自动微分:自动微分是深度学习中用于自动计算导数或梯度的技

    2024年01月21日
    浏览(43)
  • 深度学习 -- pytorch 计算图与动态图机制 autograd与逻辑回归模型

    pytorch中的动态图机制是pytorch这门框架的优势所在,阅读本篇博客可以使我们对动态图机制以及静态图机制有更直观的理解,同时在博客的后半部分有关于逻辑回归的知识点,并且使用pytorch中张量以及张量的自动求导进行构建逻辑回归模型。 计算图是用来描述运算的有向无环

    2024年02月01日
    浏览(42)
  • 深度学习实战24-人工智能(Pytorch)搭建transformer模型,真正跑通transformer模型,深刻了解transformer的架构

    大家好,我是微学AI,今天给大家讲述一下人工智能(Pytorch)搭建transformer模型,手动搭建transformer模型,我们知道transformer模型是相对复杂的模型,它是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神

    2023年04月22日
    浏览(58)
  • [PyTorch][chapter 52][迁移学习]

    前言:      迁移学习(Transfer Learning)是一种机器学习方法,它通过将一个领域中的知识和经验迁移到另一个相关领域中,来加速和改进新领域的学习和解决问题的能力。       这里面主要结合前面ResNet18 例子,详细讲解一下迁移学习的流程 一  简介      迁移学习可以通

    2024年02月12日
    浏览(39)
  • pytorch工具——pytorch中的autograd

    注意

    2024年02月15日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包