分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测

这篇具有很好参考价值的文章主要介绍了分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测

效果一览

分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测
分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测

分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测
分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测
分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测
分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,分类预测,WOA,鲸鱼算法同步优化特征选择,支持向量机分类预测

基本介绍

MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测(完整程序和数据)
WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,优化前后对比,基于LIBSVM。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测
  • 完整程序和数据下载方式2(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序3份,数据订阅后私信我获取):MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)

% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);

curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update the leader
        if fitness<Best_Cost % Change this to > for maximization problem
            Best_Cost=fitness; % Update alpha
            Best_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(pop*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Best_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);
                
            end
            
        end
    end
    t=t+1;
    curve(t)=Best_Cost;
    Best_pos(2)=round(Best_pos(2));
    [t Best_Cost]
end



参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502文章来源地址https://www.toymoban.com/news/detail-625106.html

到了这里,关于分类预测 | MATLAB实现WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包