自监督去噪:Noise2Self原理分析及实现 (Pytorch)

这篇具有很好参考价值的文章主要介绍了自监督去噪:Noise2Self原理分析及实现 (Pytorch)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

文章地址:https://arxiv.org/abs/1901.11365

代码地址: https://github.com/czbiohub-sf/noise2self

要点
  Noise2Self方法不需要信号先验信息、噪声估计信息和干净的训练数据。唯一的假设就是噪声在测量的不同维度上表现出的统计独立性,而真实信号表现出一定的相关性。Noiser2Self根据J-invariant提出了一种噪声校正的方案,可以应用到一系列的去噪方法之中,提高这些去噪方法的效果。


1. 方法原理

如果所研究对象的空间的“潜在维度”远低于测量的维度,则可以隐式地学习该结构,对测量进行降噪,并在没有任何先验知识的情况下恢复信号,信号或噪声。

传统方法问题

  • 需要对噪声模式进行估计(如高斯噪声、结构性噪声),那么这些方法的效果就受限于对噪声模式的估计。
  • 需要对信号数据的结构有先验估计,但是这会限制去噪方法迁移到其他数据集。
  • 需要校准,因为平滑度、自相似性或矩阵的秩等超参数对去噪方法也会有影响

J-invariant 定义

假设 j ∈ J j \in J jJ, J J J是m维空间, 存在一个函数变换 f ( x ) J : R m ⇒ R m f(x)_J: R^m \Rightarrow R^m f(x)J:RmRm。如果这个变换过程不依赖于输入的 x J x_J xJ,那么称这个函数是具有J不变性质。

换个能看懂的说法:信号本身是相关的,假设噪声是互不相关的(条件独立的),那么我们用一个方法对这个噪声图片的部分数据进行处理,这个处理结果应该是和处理全部数据效果相同的,也就是使用部分维度信息达到恢复全局的效果。(需要强调的是我自己这里也没有理解特别透彻,如果有错误可以提出大家讨论)

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

假设 x x x(噪声图片) 是 y y y(干净图片)的无偏估计( E [ x ∣ y ] = y E[x|y] = y E[xy]=y), 噪声是整个域内是条件独立的,那么有:
E ∣ ∣ f ( x ) − x ∣ ∣ 2 2 = E ∣ ∣ f ( x ) − y ∣ ∣ 2 2 + E ∣ ∣ x − y ∣ ∣ 2 2 E||f(x) - x||_2^2 = E||f(x) - y||_2^2 + E||x - y||_2^2 E∣∣f(x)x22=E∣∣f(x)y22+E∣∣xy22

可以看到这里的无监督学习的损失等于 传统的监督学习的损失 加上噪声带来的偏差。

用J不变性描述一下 Noise2Noise就变为
如果现在有两个观测的噪声数据 x 1 = y + n 1 x_1 = y + n_1 x1=y+n1 , x 2 = y + n 2 x_2 = y + n_2 x2=y+n2
观测组合: x = ( x 1 , x 2 ) x = (x_1,x_2) x=(x1,x2)
信号组合 y = ( y , y ) ∈ R 2 m y = (y,y) \in R^{2m} y=(y,y)R2m
如果存在 J = { J 1 , J 2 } = { { 1 , . . . , m } , { m + 1 , . . . , 2 m } } J = \{J_1,J_2\} = \{\{1,...,m\},\{m+1,...,2m\}\} J={J1,J2}={{1,...,m},{m+1,...,2m}},那么有
f J ∗ ( x ) J 2 = E [ y ∣ x 1 ] f_{J}^*(x)_{J2} = E[y|x_1] fJ(x)J2=E[yx1]

就个人理解:J-不变性就是一个假设:如果噪声是条件独立的,那么监督去噪等价于无监督去噪加上一个噪声的偏差影响。

2. 实验结果

2.1 传统校正方法

首先将J不变性应用到 传统方法中:
传统的 “median filter”是将半径范围内所有像素的点都替换为中值
这里对比的是一种“donut filter”中值滤波方法:用中值替换除了中心像素的所有位置

那么“median filter”和“donut”甜甜圈模式的滤波器,其自监督的损失分别为
∣ ∣ g r ( x ) − x ∣ ∣ 2 ||g_r(x) - x||^2 ∣∣gr(x)x2

∣ ∣ f r ( x ) − x ∣ ∣ 2 ||f_r(x) - x||^2 ∣∣fr(x)x2

用图绘制出来:

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

从上图可以看出:median滤波器监督学习的损失随着半径的增加而线性增加,而donut滤波器在r = 3的时候其损失有一个最佳值。蓝色实线和蓝色虚线的垂直距离其实表征的是噪声带来的偏差,那么我们就发现了对于传统的滤波器,我们只能够更改输入来进行调整滤波效果,但是对于donut这类具有J-invariant性质的滤波器,我们可以通过一些原则来调整滤波效果(比如这里的距离r)

那么就可以给定一个比较通用的新滤波器形式了
f θ ( x ) J : = g θ ( 1 J . s ( x ) + 1 J c . x ) J f_{\theta}(x)_J := g_{\theta}(1_J . s(x) + 1_{Jc} . x)_J fθ(x)J:=gθ(1J.s(x)+1Jc.x)J

这里的 g θ g_{\theta} gθ表示传统的滤波其, s ( x ) s(x) s(x)表示将一些像素替换为周围其他像素的值/均值的一个操作。

个人理解:和Noise2Void那种盲点去噪的感觉相同,都是将输入的某些值进行替换,然后恢复那个点的信息。如果将这种方法应用到传统方法中可以帮我们找到最佳的滤波参数。

2.2 高斯噪声
自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督
2.3 不同网络结构对比
自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

3. 代码实现

相关代码参考: https://github.com/czbiohub-sf/noise2self

3.1 J-invariant + 传统方法

这里以使用 J-invariant 到 中值滤波为例


加载相关库和数据

import sys
sys.path.append("..")
import numpy as np
import matplotlib.pyplot as plt
from skimage.morphology import disk
from skimage.filters import gaussian, median
from skimage import data, img_as_float, img_as_ubyte
from skimage.color import gray2rgb
from skimage.util import random_noise
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import mean_squared_error as mse
from util import plot_grid, plot_images, expand

# 加载原始数据
plt.rc('figure', figsize = (5,5))
show = lambda x: plt.imshow(x, cmap=plt.cm.gray)
image = data.camera()
show(image)
plt.show()

# 加噪原始数据
np.random.seed(3)
noisy_image = img_as_ubyte(random_noise(image, mode = 'gaussian', var=0.01))
show(noisy_image)
plt.show()

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

定义中值滤波和donut中值滤波方法(引入J-invariant)

def mask_center(x):
    x[len(x)//2,len(x)//2] = 0
    return x

plot_images([1-disk(4), 1-mask_center(disk(4))])

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督
滤波并进行对比

radii = range(1, 7)
mask_med = np.array([median(noisy_image, mask_center(disk(i))) for i in radii])
med = np.array([median(noisy_image, disk(i)) for i in radii])

plt.figure(figsize=(18,6))
for i in range(1,7):
    plt.subplot(2,6,i)
    show(mask_med[i-1])
    plt.title("r={}".format(radii[i-1]))
    if i ==1:
        plt.ylabel("donut")

for i in range(1,7):
    plt.subplot(2,6,6+i)
    show(med[i-1])
    if i ==1:
        plt.ylabel("median filter")
    
plt.show()

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

统计损失及相关参考指标

def stats(im_list, noisy_img, img):
    img = img_as_float(img)
    noisy_img = img_as_float(noisy_img)
    im_list = [img_as_float(x) for x in im_list]
    
    loss = [mse(x, noisy_img) for x in im_list]
    mse_gt = [mse(x, img) for x in im_list]
    psnr_gt = [psnr(x, img) for x in im_list]
    
    return loss, mse_gt, psnr_gt

loss_med, mse_med, psnr_med = stats(med, noisy_image, image)
loss_mask_med, mse_mask_med, psnr_mask_med = stats(mask_med, noisy_image, image)
opt = radii[np.argmin(loss_mask_med)]


plt.figure(figsize=(7,5))

plt.plot(radii, loss_mask_med, label = 'self-supervised, donut median', color = 'C0')
plt.plot(radii, loss_med, label = 'self-supervised, ordinary median', color = 'C1')

plt.axvline(radii[np.argmin(loss_mask_med)], color='k', linestyle='--')
plt.title('Calibrating a Median Filter')

plt.plot(radii, mse_mask_med, label = 'reconstruction error, donut median', color = 'C0', linestyle='--')
plt.plot(radii, mse_med, label = 'reconstruction error, ordinary median', color = 'C1', linestyle='--')
plt.ylabel('MSE')
plt.xlabel('Radius of Median Filter')

plt.yticks([0.002, 0.012])
plt.ylim(0, 0.0143)
plt.legend(loc='center right')
plt.show()

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

加入J-invariant之后可以帮助我们找到最佳的滤波参数(此处r = 3)

3.1 J-invariant + 神经网络

加载库及数据

from util import show, plot_images, plot_tensors
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import Dataset

mnist_train = MNIST(root='/data/mnist/', download = True,
                    transform = transforms.Compose([
                        transforms.ToTensor(),
                    ]), train = True)

mnist_test = MNIST('/data/mnist/', download = True,
                    transform = transforms.Compose([
                        transforms.ToTensor(),
                    ]), train = False)

定义加噪方法

from torch import randn
def add_noise(img):
    return img + randn(img.size())*0.4

class SyntheticNoiseDataset(Dataset):
    def __init__(self, data, mode='train'):
        self.mode = mode
        self.data = data
        
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        img = self.data[index][0]
        return add_noise(img), img
noisy_mnist_train = SyntheticNoiseDataset(mnist_train, 'train')
noisy_mnist_test = SyntheticNoiseDataset(mnist_test, 'test')
noisy, clean = noisy_mnist_train[0]
plot_tensors([noisy[0], clean[0]], ['Noisy Image', 'Clean Image'])

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

加mask也就是加盲点,需要恢复的也是这些盲点的信息

class Masker():
    """Object for masking and demasking"""

    def __init__(self, width=3, mode='zero', infer_single_pass=False, include_mask_as_input=False):
        self.grid_size = width
        self.n_masks = width ** 2

        self.mode = mode
        self.infer_single_pass = infer_single_pass
        self.include_mask_as_input = include_mask_as_input

    def mask(self, X, i):

        phasex = i % self.grid_size
        phasey = (i // self.grid_size) % self.grid_size
        mask = pixel_grid_mask(X[0, 0].shape, self.grid_size, phasex, phasey)
        mask = mask.to(X.device)

        mask_inv = torch.ones(mask.shape).to(X.device) - mask

        if self.mode == 'interpolate':
            masked = interpolate_mask(X, mask, mask_inv)
        elif self.mode == 'zero':
            masked = X * mask_inv
        else:
            raise NotImplementedError
            
        if self.include_mask_as_input:
            net_input = torch.cat((masked, mask.repeat(X.shape[0], 1, 1, 1)), dim=1)
        else:
            net_input = masked

        return net_input, mask

    def __len__(self):
        return self.n_masks

    def infer_full_image(self, X, model):

        if self.infer_single_pass:
            if self.include_mask_as_input:
                net_input = torch.cat((X, torch.zeros(X[:, 0:1].shape).to(X.device)), dim=1)
            else:
                net_input = X
            net_output = model(net_input)
            return net_output

        else:
            net_input, mask = self.mask(X, 0)
            net_output = model(net_input)

            acc_tensor = torch.zeros(net_output.shape).cpu()

            for i in range(self.n_masks):
                net_input, mask = self.mask(X, i)
                net_output = model(net_input)
                acc_tensor = acc_tensor + (net_output * mask).cpu()

            return acc_tensor


def pixel_grid_mask(shape, patch_size, phase_x, phase_y):
    A = torch.zeros(shape[-2:])
    for i in range(shape[-2]):
        for j in range(shape[-1]):
            if (i % patch_size == phase_x and j % patch_size == phase_y):
                A[i, j] = 1
    return torch.Tensor(A)


def interpolate_mask(tensor, mask, mask_inv):
    device = tensor.device

    mask = mask.to(device)

    kernel = np.array([[0.5, 1.0, 0.5], [1.0, 0.0, 1.0], (0.5, 1.0, 0.5)])
    kernel = kernel[np.newaxis, np.newaxis, :, :]
    kernel = torch.Tensor(kernel).to(device)
    kernel = kernel / kernel.sum()

    filtered_tensor = torch.nn.functional.conv2d(tensor, kernel, stride=1, padding=1)

    return filtered_tensor * mask + tensor * mask_inv

masker = Masker(width = 4, mode='interpolate')
net_input, mask = masker.mask(noisy.unsqueeze(0), 0)
plot_tensors([mask, noisy[0], net_input[0], net_input[0] - noisy[0]],
            ["Mask", "Noisy Image", "Neural Net Input", "Difference"])

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

加载网络模型和进行训练

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import MSELoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
from models.modules import ConvBlock


class BabyUnet(nn.Module):
    def __init__(self, n_channel_in=1, n_channel_out=1, width=16):
        super(BabyUnet, self).__init__()
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.pool2 = nn.MaxPool2d(kernel_size=2)

        self.up1 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2, align_corners=False)
        self.up2 = lambda x: F.interpolate(x, mode='bilinear', scale_factor=2, align_corners=False)

        self.conv1 = ConvBlock(n_channel_in, width)
        self.conv2 = ConvBlock(width, 2*width)

        self.conv3 = ConvBlock(2*width, 2*width)

        self.conv4 = ConvBlock(4*width, 2*width)
        self.conv5 = ConvBlock(3*width, width)

        self.conv6 = nn.Conv2d(width, n_channel_out, 1)

    def forward(self, x):
        c1 = self.conv1(x)
        x = self.pool1(c1)
        c2 = self.conv2(x)
        x = self.pool2(c2)
        x = self.conv3(x)

        x = self.up1(x)
        x = torch.cat([x, c2], 1)
        x = self.conv4(x)
        x = self.up2(x)
        x = torch.cat([x, c1], 1)
        x = self.conv5(x)
        x = self.conv6(x)
        return x
model = BabyUnet()
loss_function = MSELoss()
optimizer = Adam(model.parameters(), lr=0.001)

data_loader = DataLoader(noisy_mnist_train, batch_size=32, shuffle=True)

pbar = tqdm(data_loader)

for i, batch in enumerate(pbar):
    noisy_images, clean_images = batch
    
    net_input, mask = masker.mask(noisy_images, i)
    net_output = model(net_input)
    
    loss = loss_function(net_output*mask, noisy_images*mask)
    
    optimizer.zero_grad()

    loss.backward()
    
    optimizer.step()
    
    pbar.set_description("Iter:{},loss:{}".format(i,loss.item()))
    # if i % 10 == 0:
    #     print("Loss (", i, "): \t", round(loss.item(), 4))
        
    if i == 100:
        break

测试训练效果

test_data_loader = DataLoader(noisy_mnist_test,
                                              batch_size=32,
                                              shuffle=False,
                                              num_workers=3)
i, test_batch = next(enumerate(test_data_loader))
noisy, clean = test_batch
simple_output = model(noisy)
invariant_output = masker.infer_full_image(noisy, model)
idx = 3
plot_tensors([clean[idx], noisy[idx], simple_output[idx], invariant_output[idx]],
            ["Ground Truth", "Noisy Image", "Single Pass Inference", "J-Invariant Inference"])

自监督去噪:Noise2Self原理分析及实现 (Pytorch),AI文章阅读与复现,pytorch,人工智能,denoise,去噪,自监督

盲点网络训练后使用不同的输入(加盲点或者不加)得到的效果有些许差别,但是整体的去噪效果还可以。文章来源地址https://www.toymoban.com/news/detail-625412.html


4. 总结

  1. 引入J-invariant的概念到去噪工作之中,通过测试对比发现这种方法的自监督比传统方法有更好的效果,可以帮助传统方法寻找最佳的调整参数
  2. J-invariant的思路可以应用到传统去噪方法中或者先前的无监督、自监督学习工作之中,提高效果。(对比了Noise2Noiser和Noiser2Void方法)
  3. 和Noise2Void有异曲同工之妙,分析原理都是使用盲点网络的思想对输入数据进行mask,然后使用网络恢复这些盲点位置的信息。所以也存在和盲点网络相同的问题
    • 损失了盲点位置的信息
    • 盲点网络的假设:噪声是条件不相关的,信号是相关的;对于结构性的噪声的效果会较差。
    • 噪声零均值假设等假设限制了该方法应用到实际数据之中。

到了这里,关于自监督去噪:Noise2Self原理分析及实现 (Pytorch)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无监督去噪的一个变迁(1)——N2N→N2V→HQ-SSL

    知乎同名账号同步发表 1. 前沿 N2N,即 Noise2Noise: Learning Image Restoration without Clean Data ,2018 ICML的文章。 N2V,即 Noise2Void - Learning Denoising from Single Noisy Images ,2019 CVPR的文章。 这两个工作都是无监督去噪的重要开山之作,本文先对其进行简单总结,然后引出一个变体:HQ-SSL(2

    2024年01月17日
    浏览(45)
  • 【自监督论文阅读笔记】Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture

    2023         本文展示了一种 学习高度语义图像表示 的方法,而 不依赖于手工制作的数据增强 。本文介绍了 基于图像的联合嵌入预测架构 (I-JEPA) ,这是一种用于从图像进行自监督学习的 非生成方法 。 I-JEPA 背后的想法很简单: 从单个上下文块,预测同一图像中各种目

    2024年02月09日
    浏览(47)
  • Matlab小波去噪——基于wden函数的去噪分析

    1.利用MATLAB绘制原始信号,对其加6分贝高斯白噪声; 2.以Minimaxi阈值法,软阈值函数,3层分解层数,分别用dbN和symN小波对加噪信号去噪,获得分解图和去噪后的图,并用信噪比和均方根误差作为评判标准,确定合适的小波基函数; 3.用第2步确定的小波基函数,软阈值函数,

    2024年02月04日
    浏览(48)
  • MAE:视觉自监督2021(原理+代码)

    主要介绍MAE及其升级版CAE原理与代码 代码连接:MAE: https://github.com/facebookresearch/mae CAE :https://github.com/lxtGH/CAE 论文「Masked Autoencoders Are Scalable Vision Learners」 证明了 masked autoencoders(MAE) 是一种可扩展的计算机视觉自监督学习方法。 本文提出了一种掩膜自编码器 (MAE)架构,

    2023年04月08日
    浏览(37)
  • 计算机视觉 + Self-Supervised Learning 五种算法原理解析

    自监督学习是一种机器学习方法,它利用未标记的数据来训练模型,而无需人工标注的标签。相反,自监督学习通过利用数据中的自动生成的标签或任务来训练模型。 现在,让我使用拟人化的方法来解释自监督学习的原理。假设你是一个学习者,而计算机视觉任务是你需要完

    2024年02月11日
    浏览(46)
  • SSL Error:Self signed certificate问题分析及解决

    问题发现 使用Postman工具向后台发送数据时,数据一直到不了后台,并且一直报错“ SSL Error:Self signed certificate | Disable SSL Vertification ”现象,如下图: 问题分析 自从安装Postman工具后,所有配置均采用默认配置,对比其他正常接口的传参和token也并未发现异常的地方,因此,

    2024年02月02日
    浏览(44)
  • 通信原理板块——线性分组码之监督矩阵、生成矩阵、编解码计算

    微信公众号上线,搜索公众号***小灰灰的FPGA***,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等 线性分组码之监督矩阵、生成矩阵、编解码计算 以(n,k

    2024年02月04日
    浏览(50)
  • 计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理

            激光雷达是目前正在改变世界的传感器。它集成在自动驾驶汽车、自主无人机、机器人、卫星、火箭等中。该传感器使用激光束了解世界,并测量激光击中目标返回所需的时间,输出是点云信息,利用这些信息,我们可以从3D点云中查找障碍物。         从自

    2024年02月07日
    浏览(58)
  • 9.1.tensorRT高级(4)封装系列-自动驾驶案例项目self-driving-道路分割分析

    杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-自动驾驶案例项目self-driving-道路分割分析 课程大纲可看下面的思维导图 这节我们学习自动驾驶场景中的模型案

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包