opencv对相机进行畸变校正,及校正前后的坐标对应

这篇具有很好参考价值的文章主要介绍了opencv对相机进行畸变校正,及校正前后的坐标对应。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.背景

目前有个项目,需要用到热成像相机。但是这个热成像相机它的畸变比较厉害,因此需要用标定板进行标定,从而消除镜头畸变。
同时需要实现用户用鼠标点击校正后的画面后,显示用户点击位置的像素所代表的温度。
另外热成像sdk中还有个功能:选定一个rect,可以返回这个rect中的最高最低温度以及其各自的位置。假如我们需要这个功能,那么又需要知道从src到dst的关系了。

2.需求分析

消除镜头畸变后,就不能直接使用热成像sdk提供的函数来查询像素对应的温度。
因为在查询函数中,有个像素坐标的形参,要求传入原来的热成像图像A的像素坐标,函数返回此像素位置的温度。
而我们经过畸变消除后,得到画面B。B上面的特定像素所处的坐标和原图不一定一样。
因此,假如用户想查询画面B上的某个像素点的有效温度,就必须要取得此像素点在原图A上的位置坐标。
而在知道原图的最高最低温度点的位置后,需要知道其在校正后的画面中的位置,才能准确绘制出来。
总结一下,需要实现以下功能:
a、镜头畸变校正
b、知道校正后的画面坐标(x,y),求其在原画面的坐标(x’,y’)
c、知道原画面坐标(x1,y1),求其在校正后的画面坐标(x2,y2)

3.解决方案

其实很简单,opencv本身就提供了。

3.1.镜头畸变校正

在经过 findChessboardCorners、calibrateCamera之后,我们就已经获得了相机矩阵cameraMatrix、畸变矩阵distCoeffs。
然后,我们利用getOptimalNewCameraMatrix,获得了一个相对容易控制画面取舍的新相机矩阵newCamMatrix。
接下来,就有两种方式对画面进行校正:
a、直接undistort。
b、先利用initUndistortRectifyMap得到map1、map2,然后再利用remap进行画面校正。
后面的代码把两种都演示了。

3.2.知道校正后的画面坐标(x, y),求其在原画面的坐标(x’, y’)

其实,我们真正需要的是第二种。
关键就在于map1、map2。
这两个矩阵是什么玩意呢?
其实你先看看他们的尺寸、通道数,再查阅一下资料就知道了:
map1、map2的尺寸与目标图像(校正后的图像)的尺寸一致,而通道数为1(这个其实不一定,与其他参数有关,暂时先这样认为)。我们假设,最终图像(x,y)处的像素来源于源图像(x’,y’)处,那么,map1中存储了坐标(x’,y’)中的x’,而map2中存储了y’。
虽然我描述得很混乱,但是你配合代码应该明白我在说什么。😁
所以,我们直接利用这个map1、map2就可以实现从消除畸变后的画面坐标转换到原画面的坐标了。

    initUndistortRectifyMap(cameraMatrix, distCoeffs, cv::Mat(), newCamMatrix, imageSize, CV_32FC1, map1, map2);
    
    ......
   
    Point dstPt(400, 109);
    double pt_x = map1.at<float>(dstPt);
    double pt_y = map2.at<float>(dstPt);

3.2.知道原画面坐标(x1, y1),求其在校正后的画面坐标(x2, y2)

这个可以利用opencv的undistortPoints函数进行求解。
假如你是单目相机标定,需要注意第三个参数使用相机矩阵、第五个参数使用空矩阵、第六个参数使用新相机矩阵。这些参数需要和initUndistortRectifyMap的相对应起来。

    vector<Point2f> srcPts;
    srcPts.push_back(Point2f(300, 145));
    vector<Point2f> dstPts;
    undistortPoints(srcPts, dstPts, cameraMatrix, distCoeffs, Mat(), newCamMatrix);

假如你用的是立体相机标定的话【opencv/samples/cpp/stereo_calib.cpp】,可以直接把得到的R、P填上去:

  stereoRectify(cameraMatrix[0], distCoeffs[0],
            cameraMatrix[1], distCoeffs[1],
            imageSize, R, T, R1, R2, P1, P2, Q,
            CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
......
  vector<Point2f> srcPts;
  srcPts.push_back(Point2f(110, 205));
  vector<Point2f> dstPts;
  undistortPoints(srcPts, dstPts, cameraMatrix[0], distCoeffs[0], R1, P1);

4.效果

由于一些原因,我不能直接展示我的效果图。这里用opencv自带的图像来演示吧。
opencv相机畸变校正,opencv,opencv,数码相机,人工智能

5.代码

int cameraCalibration()
{
    Size boardSize = {9, 6};
    float squareSize = 0.05;
    bool displayCorners = false;

    vector<string> imageList;
    for(int i = 0; i < 9; i++)
    {
        QString leftImgFile = QString("../data/left%1.jpg").arg(i + 1, 2, 10, QLatin1Char('0'));
        imageList.push_back(leftImgFile.toStdString());
    }

    // 存放相机的图像的角点位置
    vector<vector<Point2f>> imagePoints;
    // 存放实际的物体坐标
    vector<vector<Point3f>> objectPoints;

    Size imageSize;

    int i, j, nimages = imageList.size();

    imagePoints.resize(nimages);

    // 存放能够顺利找到角点的图像的路径
    vector<string> goodImageList;

    for(i = 0, j = 0; i < nimages; i++ )
    {
        const string& filename = imageList[i];
        Mat img = imread(filename, IMREAD_GRAYSCALE);

        // 检查图像是否为空
        if(img.empty())
            continue;

        imageSize = img.size();

        // 找角点
        bool found = false;
        vector<Point2f>& corners = imagePoints[j];
        found = findChessboardCorners(img, boardSize, corners,
                                      CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
        if(found == false)
        {
            continue;
        }

        // 再进行一次亚像素查找
        cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
                     TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                  30, 0.01));


        // 显示查找的结果
        if(displayCorners)
        {
            cout << "found:" << filename.c_str() << endl;
            Mat cimg;
            cvtColor(img, cimg, COLOR_GRAY2BGR);
            drawChessboardCorners(cimg, boardSize, corners, found);
            imshow("corners", cimg);
            char c = (char)waitKey(100);
        }

        goodImageList.push_back(imageList[i]);
        j++;
    }

    nimages = j;
    if( nimages < 2 )
    {
        cout << "Error: too little data to run the calibration\n";
        return -1;
    }

    // 截取长度,保留有用的数据
    imagePoints.resize(nimages);

    // 填充3d数据
    objectPoints.resize(nimages);
    for(int i = 0; i < nimages; i++ )
    {
        for(int j = 0; j < boardSize.height; j++ )
            for(int k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
    }

    cv::Mat cameraMatrix(3, 3, CV_32FC1, cv::Scalar::all(0));  //内参矩阵3*3
    cv::Mat distCoeffs(1, 5, CV_32FC1, cv::Scalar::all(0));    //畸变矩阵1*5
    vector<cv::Mat> rotationMat;                               //旋转矩阵
    vector<cv::Mat> translationMat;                            //平移矩阵

    //!标定
    /**
     * points3D_all_images: 真实三维坐标
     * points_all_images: 提取的角点
     * image_size: 图像尺寸
     * camera_K : 内参矩阵K
     * distCoeffs: 畸变参数
     * rotationMat: 每个图片的旋转向量
     * translationMat: 每个图片的平移向量
     * */
    calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rotationMat, translationMat, 0);


    Mat testImg = imread(imageList[0], IMREAD_COLOR);


    cv::Rect validROI;
    Mat newCamMatrix = getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1.0, imageSize, &validROI);

//    Mat undistortedImg;
//    undistort(testImg, undistortedImg, cameraMatrix, distCoeffs, newCamMatrix);

//    cv::rectangle(undistortedImg, validROI, Scalar(255, 0, 0));
//    imshow("undistorted image", undistortedImg);


    Mat undistortedImg2;
    Mat map1, map2;
    initUndistortRectifyMap(cameraMatrix, distCoeffs, cv::Mat(), newCamMatrix, imageSize, CV_32FC1, map1, map2);

    //    cout << "map1 size" << map1.size() << "," << map1.channels() << endl;
    //    cout << "map2 size" << map2.size() << "," << map2.channels() << endl;

    remap(testImg, undistortedImg2, map1, map2, INTER_LINEAR);
    cv::rectangle(undistortedImg2, validROI, Scalar(255, 0, 0));
    cout << "calibration completed\r\n";

    // map1 map2中存储的分别是最终图像对应像素的x,y坐标
    // 知道dst的坐标,求src的相应坐标
    Point dstPt(400, 109);
    double pt_x = map1.at<float>(dstPt);
    double pt_y = map2.at<float>(dstPt);
    cout << "dstPt:" << dstPt << "; " << "origin pt:" << pt_x << ", "<< pt_y << endl;
    cv::circle(testImg, Point(pt_x, pt_y), 5, Scalar(255, 0, 0), 2);
    cv::circle(undistortedImg2, dstPt, 5, Scalar(255,0, 0), 2);


    // 知道src的坐标,求dst的相应坐标
    vector<Point2f> srcPts;
    srcPts.push_back(Point2f(300, 145));
    vector<Point2f> dstPts;
    undistortPoints(srcPts, dstPts, cameraMatrix, distCoeffs, Mat(), newCamMatrix);
    cout << "the dst:" << dstPts << endl;
    circle(testImg, srcPts[0], 8, Scalar(0, 255, 0));
    circle(undistortedImg2, dstPts[0], 8, Scalar(0, 255, 0));
    imshow("src to dst: src", testImg);
    imshow("src to dst: dst", undistortedImg2);
}


参考:
【关于OpenCV中的去畸变】
【用OpenCV进行相机标定(张正友标定,有代码)】
【《opencv学习笔记》-- 重映射】文章来源地址https://www.toymoban.com/news/detail-625479.html

到了这里,关于opencv对相机进行畸变校正,及校正前后的坐标对应的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 相机的畸变矫正与opencv代码说明

    图像算法中会经常用到摄像机的畸变校正,有必要总结分析OpenCV中畸变校正方法,其中包括普通针孔相机模型和鱼眼相机模型fisheye两种畸变校正方法。普通相机模型畸变校正函数针对OpenCV中的cv::initUndistortRectifyMap(),鱼眼相机模型畸变校正函数对应OpenCV中的cv::fisheye::initUndi

    2024年02月14日
    浏览(41)
  • 【相机标定】opencv python 标定相机内参时不计算 k3 畸变参数

    畸变参数 k3 通常用于描述径向畸变的更高阶效应,即在需要高精度的应用中可以用到,一般的应用中 k1, k2 足矣。 常见的应用中, orbslam3 中是否传入 k3 是可选的,而 kalibr 标定中则只需要传入 k1, k2 。但计算 k3 时的 k1, k2 不等于不计算 k3 时的 k1, k2 ,因此需要学会两种场景下

    2024年02月09日
    浏览(41)
  • OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像

    若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136616551 各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究 红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、

    2024年03月13日
    浏览(48)
  • Matlab 校正镜头畸变图像

    生活中一些针孔相机会给图像带来严重的失真,这主要是由于硬件和环境的因素所示导致的,其中主要的两种畸变是径向畸变和切向畸变。 径向畸变会导致直线看起来弯曲,即点距离图像中心越远,径向畸变就越大。例如,下面显示了一张图像,其中棋盘的两个边缘标有红线

    2024年02月11日
    浏览(47)
  • 全景图像畸变校正

    理想的相机基本上是小孔成像的,在小孔成像模型中,如果焦距一定,那么图像传感器像素平面的面积直接决定了相机视场角的大小,超过这个视场角范围的物体不会被镜头获取到。因此基于透镜成像原理的相机,视场角无法做到足够大,水平视场角一般小于140°。 但是在一

    2024年02月09日
    浏览(51)
  • micropython 自制数码相机

    像头(CAMERA或WEBCAM)又称为电脑相机、电脑眼、电子眼等,是一种视频输入设备,被广泛的运用于视频 会议,安防系统  、图像采集系统、 环境监控 、工业现场过程控制 等方面。本实验用TPYBoard  v102以 及PTC06 串口摄像头模块DIY一个简易的照相机。 1.所用器材:    TPY

    2024年02月19日
    浏览(53)
  • 如何从数码相机恢复已删除的照片?

    “嗨,我删除了索尼数码相机中的所有照片。有什么办法可以让他们回来吗?” ——刘凯 我们经常从数码相机中删除照片。但是,如果我们误删除了一些重要的照片,则很难将其恢复,因为删除的照片可能会绕过回收站或垃圾箱,并且数码相机存储卡中没有“最近删除”文

    2024年04月09日
    浏览(57)
  • opencv实现图像去畸变——几种实现方式(含完整代码)&&效果对比图&&详细参数说明&&核心参数变化对应变化效果图&&常见问题

    以下介绍下opencv实现图像去畸变的几种方式以及详细参数说明,含项目案例,含扩展的相关知识 ① cv::fisheye::initUndistortRectifyMap 和 ② cv::initUndistortRectifyMap 都是 OpenCV 库中的函数,用于摄像机的畸变校正和图像的矫正。二者的区别在于,cv::fisheye::initUndistortRectifyMap 适用于

    2024年02月10日
    浏览(110)
  • opencv相机坐标到图像坐标的转换

    相机坐标到图像坐标的转换通常需要使用相机内参矩阵和外参矩阵。在OpenCV中,可以通过cv2.projectPoints()函数实现相机坐标到图像坐标的转换。具体的程序如下: 以上代码中,读取了一张图像和相机参数,使用cv2.projectPoints()函数进行相机坐标到图像坐标的转换,最后在图像上

    2024年02月11日
    浏览(43)
  • U盘/硬盘/数码相机RAW格式文件丢失的原因|恢复方法

    在现代数字生活中,U盘、硬盘以及数码相机等设备已经成为我们储存和分享数据的主要工具。然而,当这些设备中的RAW格式文件出现丢失时,我们可能会陷入困境。面对这种情况,了解如何恢复这些RAW格式文件就变得至关重要。 一、理解RAW格式文件 RAW格式文件是一种原始数

    2024年02月12日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包