论文阅读-Neighbor Contrastive Learning on Learnable Graph Augmentation(AAAI2023)

这篇具有很好参考价值的文章主要介绍了论文阅读-Neighbor Contrastive Learning on Learnable Graph Augmentation(AAAI2023)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        人为设计的图增强,可能会破坏原始图的拓扑结构,同时相邻节点被视为负节点,因此被推离锚点很远。然而,这与网络的同质性假设是矛盾的,即连接的节点通常属于同一类,并且应该彼此接近。本文提出了一种端到端的自动GCL方法,称为NCLA,将邻居对比学习应用于可学习图增强

方案

        通过多头图注意力机制自动学习具有自适应拓扑结构的多个图增强视图,可以在不需要先验领域知识的情况下兼容各种图数据集。

        此外,设计了一种允许每个锚点有多个正信号的邻居对比损失

        大量实验表明,当标签非常有限时,NCLA在自监督GCL上产生了最先进的节点分类性能,甚至超过了监督GCL。

         

论文介绍:AAAI|2023基于可学习图增广的邻居对比学习文章来源地址https://www.toymoban.com/news/detail-625624.html

到了这里,关于论文阅读-Neighbor Contrastive Learning on Learnable Graph Augmentation(AAAI2023)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读笔记】Contrastive Learning with Stronger Augmentations

    基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(Contrastive Learning with Stronger Augmentations,简称CLSA)。以下是对摘要的解析: 问题陈述: 表征学习(representation learning)已在对比学习方法的推动下得到了显著发展。 当前

    2024年02月19日
    浏览(44)
  • 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation

    2023-RecSys https://github.com/Tokkiu/ECL 对比学习(CL)有利于对具有信息性自我监督信号的顺序推荐模型的训练。 现有的解决方案应用一般的顺序数据增强策略来生成正对,并鼓励它们的表示是不变的。 然而,由于用户行为序列的固有属性,一些增强策略,如项目替代,可能会导致

    2024年01月18日
    浏览(43)
  • 【论文阅读笔记】 Representation Learning with Contrastive Predictive Coding

    这段文字是论文的摘要,作者讨论了监督学习在许多应用中取得的巨大进展,然而无监督学习并没有得到如此广泛的应用,仍然是人工智能中一个重要且具有挑战性的任务。在这项工作中,作者提出了一种通用的无监督学习方法,用于从高维数据中提取有用的表示,被称为“

    2024年01月25日
    浏览(40)
  • 【论文阅读】Self-supervised Learning: Generative or Contrastive

    研究了在计算机视觉、自然语言处理和图形学习中用于表示的新的自监督学习方法。全面回顾了现有的实证方法,并根据其目的将其归纳为三大类:生成性、对比性和生成性对比(对抗性)。进一步收集了关于自我监督学习的相关理论分析,以对自我监督学习为什么有效提供

    2024年01月18日
    浏览(50)
  • 论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

    论文链接:https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf         目标检测是指有效地找出图像中感兴趣的目标,然后准确地确定它们的类别和位置。近年来,许多优秀的方法被开发出来,以提供强

    2024年02月04日
    浏览(44)
  • 论文阅读《Vision-Language Pre-Training with Triple Contrastive Learning》

    本文是2022年CVPR上的一篇 多模态 论文,利用对比学习和动量来进行图片与文本信息的上游预训练。 作者提出问题 简单的跨模态比对模型无法确保来自同一模态的相似输入保持相似。(模态内部语义信息损失) 全局互信息最大化的操作没有考虑局部信息和结构信息。 对于上

    2024年04月13日
    浏览(47)
  • DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读

    原文链接: https://ojs.aaai.org/index.php/AAAI/article/view/25114/24886 该论文设计了一种 新的零样本学习范式,通过迁移语言模型中的先验语义知识,与视觉模型的特征感知能力进行对齐,以增强后者对于未见过图像的识别能力。 零样本学习(ZSL)旨在预测在训练期间从未出现样本的未

    2024年01月17日
    浏览(50)
  • 《论文阅读27》SuperGlue: Learning Feature Matching with Graph Neural Networks

    研究领域: 图像特征点匹配 论文:SuperGlue: Learning Feature Matching with Graph Neural Networks CVPR 2020 veido 论文code  [参考] [参考] [参考]    SuperGlue:使用图神经网络学习特征匹配 本文介绍了SuperGlue,一种神经网络,通过 共同寻找对应点和拒绝不匹配点 来匹配两组本地特征。分配估

    2024年02月05日
    浏览(44)
  • [论文阅读笔记25]A Comprehensive Survey on Graph Neural Networks

    这是一篇GNN的综述, 发表于2021年的TNNLS. 这篇博客旨在对GNN的基本概念做一些记录. 论文地址: 论文 对于图像数据来说, CNN具有平移不变性和局部连接性, 因此可以在欧氏空间上良好地学习. 然而, 对于具有图结构的数据(例如社交网络 化学分子等)就需要用GNN来学习. 最早期的GN

    2024年02月11日
    浏览(56)
  • 【图像修复】论文阅读笔记 ----- 《Image inpainting based on deep learning: A review》

    原文下载链接1:https://www.sciencedirect.com/science/article/abs/pii/S0141938221000391 原文下载链接2:http://s.dic.cool/S/KSS4D4LC 本篇论文综述发表于2021年。文章总结了基于深度学习的不同类型神经网络结构的修复方法,然后分析和研究了重要的技术改进机制;从模型网络结构和恢复方法等方

    2024年02月01日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包