第八篇-Tesla P40+ChatGLM2+LoRA

这篇具有很好参考价值的文章主要介绍了第八篇-Tesla P40+ChatGLM2+LoRA。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

部署环境

  系统:CentOS-7
  CPU: 14C28T
  显卡:Tesla P40 24G
  驱动: 515
  CUDA: 11.7
  cuDNN: 8.9.2.26

目的

验证P40部署可行性,只做验证学习lora方式微调

创建环境

conda create --name glm-tuning python=3.10
conda activate glm-tuning

克隆项目

git clone https://github.com/hiyouga/ChatGLM-Efficient-Tuning
cd ChatGLM-Efficient-Tuning

安装依赖

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

准备数据-少量测试-项目已提供分词好数据

准备数据
我们将下载好的数据集解压到 data 文件夹中,解压后的文件目录为:
data/
├── dataset_info.json
└── self_cognition/
├── dev.json
└── train.json
接下来,我们修改 dataset_info.json,增加以下两列内容,从而使训练框架能够识别自定义数据集。
测试dev.json与train.json一样的,生产环境需要分离

,
"self_cognition_train": {
    "file_name": "self_cognition/train.json",
    "columns": {
        "prompt": "content",
        "query": "",
        "response": "summary",
        "history": ""
    }
},
"self_cognition_dev": {
    "file_name": "self_cognition/dev.json",
    "columns": {
        "prompt": "content",
        "query": "",
        "response": "summary",
        "history": ""
    }
}

微调代码调整

accelerate launch src/train_bash.py \
    --stage sft \
    --do_train \
    --model_name_or_path  /models/chatglm2-6b \
    --dataset self_cognition_train \
    --finetuning_type lora \
    --output_dir self_cognition_lora \
    --overwrite_cache \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 2 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-3 \
    --num_train_epochs 2.0 \
    --lora_rank 32 \
    --ddp_find_unused_parameters False \
    --source_prefix 你现在是一名销售员,根据以下商品标签生成一段有吸引力的商品广告词。 \
    --plot_loss \
    --fp16
如果调整了数据集,要清理缓存,缓存目录如下
/root/.cache/huggingface/datasets
Tue Aug  1 10:45:02 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.65.01    Driver Version: 515.65.01    CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P40           Off  | 00000000:03:00.0 Off |                    0 |
| N/A   61C    P0   184W / 250W |  13503MiB / 23040MiB |     94%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
{'train_runtime': 73.3871, 'train_samples_per_second': 2.18, 'train_steps_per_second': 0.545, 'train_loss': 1.7150115966796875, 'epoch': 2.0}                                    
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [01:13<00:00,  1.83s/it]***** train metrics *****
  epoch                    =        2.0
  train_loss               =      1.715
  train_runtime            = 0:01:13.38
  train_samples_per_second =       2.18
  train_steps_per_second   =      0.545

参数:参数根据自己硬件配置自己调整
温度:P40自己改个风冷散热,散热效果不好,奔着80度去了
显存:占用大概14G

模型测试

CUDA_VISIBLE_DEVICES=0 python src/cli_demo.py \
    --model_name_or_path  /models/chatglm2-6b \
    --checkpoint_dir self_cognition_lora
python src/web_demo.py --checkpoint_dir self_cognition_lora --model_name_or_path  /models/chatglm2-6b

Input: 你是谁
ChatGLM-6B: The dtype of attention mask (torch.int64) is not bool
我是AI小木,一个由小吕开发的人工智能助手,我可以回答各种问题,提供信息,甚至进行闲聊。

Input: 你是谁开发的
ChatGLM-6B: 我不是开发的,是由小吕开发的人工智能助手,旨在为用户提供有用的回答和帮助

总结

效果还行,我的参数都设置的比较小,速度挺快的2分钟,模型微调之后认识已经调整过来了
后面准备调整更大数据集,再做数据评测

–model_name_or_path /models/chatglm2-6b 注意指定文章来源地址https://www.toymoban.com/news/detail-625824.html

参考

https://hub.nuaa.cf/hiyouga/ChatGLM-Efficient-Tuning/blob/main/examples/ads_generation.md

到了这里,关于第八篇-Tesla P40+ChatGLM2+LoRA的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AIGC】Chatglm2-lora微调

    ChatGLM2-6B 源码地址:https://github.com/THUDM/ChatGLM2-6B ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的 第二代版本 ,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 1、 更强大的性能 :基于 ChatGLM 初代模型的开发经验,我们全面

    2024年02月11日
    浏览(44)
  • LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调(CLI/GUI【text-generation-webui】)并进

    LLMs之ChatGLM2:基于ChatGLM Efficient Tuning(微调工具包)实现对ChatGLM2进行LoRA微调(CLI/GUI【text-generation-webui】)并进行推理测试图文教程之详细攻略 目录 1、硬件要求和Python依赖 2、代码和模型权重下载 (1)、项目代码下载

    2024年02月08日
    浏览(44)
  • 导出LLaMA ChatGlm2等LLM模型为onnx

    通过onnx模型可以在支持onnx推理的推理引擎上进行推理,从而可以将LLM部署在更加广泛的平台上面。此外还可以具有避免pytorch依赖,获得更好的性能等优势。 这篇博客(大模型LLaMa及周边项目(二) - 知乎)进行了llama导出onnx的开创性的工作,但是依赖于侵入式修改transform

    2024年02月13日
    浏览(42)
  • 【ChatGLM_02】LangChain知识库+Lora微调chatglm2-6b模型+提示词Prompt的使用原则

    运行langchain-ChatGLM-master下面的webui.py文件 (1) 配置知识库 新建知识库 向知识库当中添加文件 支持上传的数据格式:word、pdf、excel、csv、txt、文件夹等。但是此处我试了一下 (2) 文档数据测试 word文档测试: (3) 知识库测试模式 知识库测试只会返回输入内容在当前知识库当中的

    2024年02月14日
    浏览(42)
  • LLaMA-Factory可视化界面微调chatglm2;LoRA训练微调模型 简单案例

    参考:https://github.com/huggingface/peft https://github.com/hiyouga/LLaMA-Factory 类似工具还有流萤,注意是做中文微调训练这块;来训练微调的chatglm2需要完整最新文件,不能是量化后的模型;另外测试下来显卡资源要大于20来G才能顺利,这边T4单卡训练中间显存不足,需要开启4bit量化才行

    2024年02月05日
    浏览(55)
  • 开源大模型ChatGLM2-6B 2. 跟着LangChain参考文档搭建LLM+知识库问答系统

    租用了1台GPU服务器,系统 ubuntu20,Tesla V100-16GB (GPU服务器已经关机结束租赁了) SSH地址:* 端口:17520 SSH账户:root 密码:Jaere7pa 内网: 3389 , 外网:17518 VNC地址:* 端口:17519 VNC用户名:root 密码:Jaere7pa 硬件需求,ChatGLM-6B和ChatGLM2-6B相当。 量化等级    最低 GPU 显存 F

    2024年02月03日
    浏览(56)
  • ChatGLM2-6B_ An Open Bilingual Chat LLM _ 开源双语对话语言模型

    更强大的性能 :基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM]的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BB

    2024年04月14日
    浏览(43)
  • 第八篇:How AI Will Transform Financial Services Industry

    作者:禅与计算机程序设计艺术 什么是财务服务业?“财务服务业”指的是提供帮助客户管理资金、进行货币转换等各种金融服务的经济部门。由于金融服务的多样性及广泛应用,使得各国和地区都在不断创新,形成了众多的行业。 然而,随着人工智能(AI)技术的发展,财

    2024年02月07日
    浏览(42)
  • 从零开始学AI:ChatGLM2-6B 部署测试

    ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混

    2024年04月28日
    浏览(40)
  • AI 智能对话 - 基于 ChatGLM2-6B 训练对话知识库

    前情提要 怎么将 AI 应用到工作中呢?比如让 AI 帮忙写代码,自己通过工程上的思维将代码整合排版,我挺烦什么代码逻辑严谨性的问题,但是我又不得不承认这样的好处,我们要开始将角色转换出来,不应该是一个工具人,而成为决策者,这是从 AI 爆发中看到的发展趋势,

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包