Flink DataStream API详解

这篇具有很好参考价值的文章主要介绍了Flink DataStream API详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

DataStream API

参考:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/datastream_api.html

Data Sources

Source是程序读取其输入的位置,您可以使用env.addSource(sourceFunction)将Source附加到程序中。Flink内置了许多预先实现的SourceFunction,但是您始终可以通过实现SourceFunction(non-parallel sources)来编写自定义Source,或者通过继承RichParallelSourceFunction或实现ParallelSourceFunction接口来实现并行Source.

File-based

readTextFile(path) - 逐行读取文本文件,底层使用TextInputFormat规范读取文件,并将其作为字符串返回

val env = StreamExecutionEnvironment.getExecutionEnvironment
val lines:DataStream[String]=env.readTextFile("file:///E:\\demo\\words")
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")

readFile(fileInputFormat, path) - 根据指定的文件输入格式读取文件(仅仅读取一次,类似批处理)

val env = StreamExecutionEnvironment.getExecutionEnvironment
val inputFormat=new TextInputFormat(null)
val lines:DataStream[String]=env.readFile(inputFormat,"file:///E:\\demo\\words")
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")

readFile(fileInputFormat, path, watchType, interval, pathFilter) - 这是前两个内部调用的方法。它根据给定的FileInputFormat读取指定路径下的文件,可以根据watchType定期检测指定路径下的文件,其中watchType的可选值为FileProcessingMode.PROCESS_CONTINUOUSLY或者FileProcessingMode.PROCESS_ONCE,检查的周期由interval参数决定。用户可以使用pathFilter参数排除该路径下需要排除的文件。如果指定watchType的值被设置为PROCESS_CONTINUOUSLY,表示一旦文件内容发生改变,整个文件内容会被重复处理。

val env = StreamExecutionEnvironment.getExecutionEnvironment
val inputFormat=new TextInputFormat(null)
val lines:DataStream[String]=env.readFile(
    inputFormat,"file:///E:\\demo\\words",
    FileProcessingMode.PROCESS_CONTINUOUSLY,
    5000,new FilePathFilter {
        override def filterPath(filePath: Path): Boolean = {
            filePath.getPath.endsWith(".txt")
        }
    })
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")
Socket-based
val env = StreamExecutionEnvironment.getExecutionEnvironment
val lines:DataStream[String]=env.socketTextStream("centos",9999)
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")
Collection-based(测试)
val env = StreamExecutionEnvironment.getExecutionEnvironment
val lines:DataStream[String]=env.fromCollection(List("this is a demo","good good"))
//val lines:DataStream[String]=env.fromElements("this is a demo","good good")
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")
Custom Source
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}
import scala.util.Random

class CustomSourceFunction extends ParallelSourceFunction[String]{
  @volatile
  var isRunning:Boolean = true
  val lines:Array[String] = Array("this is a demo","hello word","are you ok")
    
  override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
    while(isRunning){
      Thread.sleep(1000)
      ctx.collect(lines(new Random().nextInt(lines.length)))//将数据输出给下游
    }
  }

  override def cancel(): Unit = {
    isRunning=false
  }
}
val env = StreamExecutionEnvironment.getExecutionEnvironment
val lines:DataStream[String]=env.addSource[String](new CustomSourceFunction)
lines.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")
FlinkKafkaConsumer√
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_${scala.version}</artifactId>
    <version>${flink.version}</version>
</dependency>
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
val lines=env.addSource(new FlinkKafkaConsumer("topic01",new SimpleStringSchema(),props))
    lines.flatMap(_.split("\\s+"))
    .map((_,1))
    .keyBy(t=>t._1)
    .sum(1)
    .print()
env.execute("wordcount")

如果使用SimpleStringSchema,仅仅能获取value,如果用户希望获取更多信息,比如 key/value/partition/offset ,用户可以通过继承KafkaDeserializationSchema类自定义反序列化对象。

import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.flink.streaming.api.scala._

class UserKafkaDeserializationSchema extends KafkaDeserializationSchema[(String,String)] {
  //这个方法永远返回false
  override def isEndOfStream(nextElement: (String, String)): Boolean = {
    false
  }
    
  override def deserialize(record: ConsumerRecord[Array[Byte], Array[Byte]]): (String, String) = {
    var key=""
    if(record.key()!=null && record.key().size!=0){
      key=new String(record.key())
    }
    val value=new String(record.value())
    (key,value)
  }
    
  //告诉Flink tuple元素类型
  override def getProducedType: TypeInformation[(String, String)] = {
    createTypeInformation[(String, String)]
  }
}
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
val lines:DataStream[(String,String)]=env.addSource(new FlinkKafkaConsumer("topic01",new UserKafkaDeserializationSchema(),props))
lines.map(t=>t._2).flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(t=>t._1)
.sum(1)
.print()
env.execute("wordcount")

如果Kafka存储的都是json格式的字符串数据,用户可以使用系统自带的一些支持json的Schema,推荐使用:

  • JsonNodeDeserializationSchema:要求value必须是json格式的字符串
  • JSONKeyValueDeserializationSchema(meta):要求key、value都必须是josn格式数据,同时可以携带元数据(分区、 offset等)
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
val jsonData:DataStream[ObjectNode]=env.addSource(new FlinkKafkaConsumer("topic01",new JSONKeyValueDeserializationSchema(true),props))
jsonData.map(on=> (on.get("value").get("id").asInt(),on.get("value").get("name")))
.print()
env.execute("wordcount")

Data Sinks

Data Sinks接收DataStream数据,并将其转发到指定文件,socket,外部存储系统或者print它们,Flink预定义一些输出Sink。

File-based

write*:writeAsText|writeAsCsv(…)|writeUsingOutputFormat,请注意DataStream上的write*()方法主要用于调试目的。

val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.writeAsText("file:///E:/results/text",WriteMode.OVERWRITE)
env.execute("wordcount")

以上写法只能保证at_least_once的语义处理,如果是在生产环境下,推荐使用flink-connector-filesystem将数据写到外围系统,可以保证exactly-once语义处理。

val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
val bucketingSink = new BucketingSink[(String,Int)]("hdfs://centos:9000/BucketingSink")
bucketingSink.setBucketer(new DateTimeBucketer("yyyyMMddHH"))//文件目录
bucketingSink.setBatchSize(1024)
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.addSink(bucketingSink)
.setParallelism(6)
env.execute("wordcount")
print() | printToErr()
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
fsEnv.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.print("测试") //输出前缀  当有多个流输出到控制台时,可以添加前缀加以区分
.setParallelism(2)
env.execute("wordcount")
Custom Sink
class  CustomSinkFunction extends  RichSinkFunction[(String,Int)]{
  override def open(parameters: Configuration): Unit = {
    println("初始化连接")
  }
    
  override def invoke(value: (String, Int), context: SinkFunction.Context[_]): Unit = {
    println(value)
  }
    
  override def close(): Unit = {
    println("关闭连接")
  }
}
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.addSink(new CustomSinkFunction)
env.execute("wordcount")
RedisSink√
  • 添加
<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>
class UserRedisMapper extends RedisMapper[(String,Int)]{
  // 设置数据类型
  override def getCommandDescription: RedisCommandDescription = {
    new RedisCommandDescription(RedisCommand.HSET,"wordcount")
  }

  override def getKeyFromData(data: (String, Int)): String = {
    data._1
  }

  override def getValueFromData(data: (String, Int)): String = {
    data._2.toString
  }
}
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers", "centos:9092")
props.setProperty("group.id", "g1")
val jedisConfig=new FlinkJedisPoolConfig.Builder()
.setHost("centos")
.setPort(6379)
.build()
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.addSink(new RedisSink[(String, Int)](jedisConfig,new UserRedisMapper))
env.execute("wordcount")
FlinkKafkaProducer√
class UserKeyedSerializationSchema extends KeyedSerializationSchema[(String,Int)]{
Int

  override def serializeKey(element: (String, Int)): Array[Byte] = {
    element._1.getBytes()
  }

  override def serializeValue(element: (String, Int)): Array[Byte] = {
    element._2.toString.getBytes()
  }

  //可以覆盖 默认是topic,如果返回值为null,表示将数据写入到默认的topic中
  override def getTargetTopic(element: (String, Int)): String = {
    null
  }
}
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props1 = new Properties()
props1.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "centos:9092")
props1.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "g1")
val props2 = new Properties()
props2.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "centos:9092")
props2.setProperty(ProducerConfig.BATCH_SIZE_CONFIG,"100")
props2.setProperty(ProducerConfig.LINGER_MS_CONFIG,"500")
props2.setProperty(ProducerConfig.ACKS_CONFIG,"all")
props2.setProperty(ProducerConfig.RETRIES_CONFIG,"2")
env.addSource(new FlinkKafkaConsumer[String]("topic01",new SimpleStringSchema(),props1))
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.sum(1)
.addSink(new FlinkKafkaProducer[(String, Int)]("topic02",new UserKeyedSerializationSchema,props2))
env.execute("wordcount")

DataStream Transformations

Map

Takes one element and produces one element.

dataStream.map { x => x * 2 }
FlatMap

Takes one element and produces zero, one, or more elements.

dataStream.flatMap { str => str.split(" ") }
Filter

Evaluates a boolean function for each element and retains those for which the function returns true.

dataStream.filter { _ != 0 }
Union

Union of two or more data streams creating a new stream containing all the elements from all the streams.

dataStream.union(otherStream1, otherStream2, ...)
Connect

“Connects” two data streams retaining their types, allowing for shared state between the two streams.

val stream1 = env.socketTextStream("centos",9999)
val stream2 = env.socketTextStream("centos",8888)
stream1.connect(stream2).flatMap(line=>line.split("\\s+"),line=>line.split("\\s+"))
.map(Word(_,1))
.keyBy("word")
.sum("count")
.print()
Split

Split the stream into two or more streams according to some criterion.

val split = someDataStream.split(
  (num: Int) =>
    (num % 2) match {
      case 0 => List("even")
      case 1 => List("odd")
    }
)               
Select

Select one or more streams from a split stream.

val even = split select "even"
val odd = split select "odd"
val all = split.select("even","odd")
val lines = env.socketTextStream("centos",9999)
val splitStream: SplitStream[String] = lines.split(line => {
    if (line.contains("error")) {
        List("error") //分支名称
    } else {
        List("info") //分支名称
    }
})
splitStream.select("error").print("error")
splitStream.select("info").print("info")

Side Out

val lines = env.socketTextStream("centos",9999)
//设置边输出标签 
val outTag = new OutputTag[String]("error") 
val results = lines.process(new ProcessFunction[String, String] {
    override def processElement(value: String, ctx: ProcessFunction[String,                 String]#Context, out: Collector[String]): Unit = {
        if (value.contains("error")) {
            ctx.output(outTag, value)
        } else {
            out.collect(value)
        }
    }
})
results.print("正常结果")
//获取边输出
results.getSideOutput(outTag)
.print("错误结果")
KeyBy

Logically partitions a stream into disjoint partitions, each partition containing elements of the same key. Internally, this is implemented with hash partitioning.

dataStream.keyBy("someKey") // Key by field "someKey"
dataStream.keyBy(0) // Key by the first element of a Tuple
Reduce

A “rolling” reduce on a keyed data stream. Combines the current element with the last reduced value and emits the new value.

env.socketTextStream("centos",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.reduce((t1,t2)=>(t1._1,t1._2+t2._2))
.print()
Fold

A “rolling” fold on a keyed data stream with an initial value. Combines the current element with the last folded value and emits the new value.

env.socketTextStream("centos",9999)
.flatMap(_.split("\\s+"))
.map((_,1))
.keyBy(0)
.fold(("",0))((t1,t2)=>(t2._1,t1._2+t2._2))
.print()
Aggregations

Rolling aggregations on a keyed data stream. The difference between min and minBy is that min returns the minimum value, whereas minBy returns the element that has the minimum value in this field (same for max and maxBy).文章来源地址https://www.toymoban.com/news/detail-625886.html

zs 001 1200
ww 001 1500
zl 001 1000
env.socketTextStream("centos",9999)
.map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1),ts(2).toDouble))
.keyBy(1)
.minBy(2)//输出含有最小值的记录
.print()
1> (zs,001,1200.0)
1> (zs,001,1200.0)
1> (zl,001,1000.0)
env.socketTextStream("centos",9999)
.map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1),ts(2).toDouble))
.keyBy(1)
.min(2)
.print()
1> (zs,001,1200.0)
1> (zs,001,1200.0)
1> (zs,001,1000.0)

到了这里,关于Flink DataStream API详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink基础之DataStream API

    union联合:被unioin的流中的数据类型必须一致 connect连接:合并的两条流的数据类型可以不一致 connec后,得到的是ConnectedStreams 合并后需要根据数据流是否经过keyby分区 coConnect: 将两条数据流合并为同一数据类型 keyedConnect 目前所使用的大多数Sink, 都是基于2PC的方式来保证状态

    2024年02月05日
    浏览(45)
  • flink cdc DataStream api 时区问题

    以postgrsql 作为数据源时,Date和timesatmp等类型cdc同步读出来时,会发现一下几个问题: 源表: sink 表: 解决方案:在自定义序列化时进行处理。 java code scala code mysql cdc也会出现上述时区问题,Debezium默认将MySQL中datetime类型转成UTC的时间戳({@link io.debezium.time.Timestamp}),时区是

    2024年02月07日
    浏览(40)
  • 《Flink学习笔记》——第五章 DataStream API

    一个Flink程序,其实就是对DataStream的各种转换,代码基本可以由以下几部分构成: 获取执行环境 读取数据源 定义对DataStream的转换操作 输出 触发程序执行 获取执行环境和触发程序执行都属于对执行环境的操作,那么其构成可以用下图表示: 其核心部分就是Transform,对数据

    2024年02月10日
    浏览(44)
  • Flink|《Flink 官方文档 - DataStream API - 状态与容错 - 使用状态》学习笔记

    学习文档:Flink 官方文档 - DataStream API - 状态与容错 - 使用状态 相关文档: 有状态流处理背后的概念:Flink|《Flink 官方文档 - 概念透析 - 有状态流处理》学习笔记 Redis 过期 key 的删除机制:Redis|过期 key 的删除机制 学习笔记如下: 如果要使用键控状态,则必须要为 DataS

    2024年02月03日
    浏览(44)
  • 【Flink-1.17-教程】-【四】Flink DataStream API(1)源算子(Source)

    DataStream API 是 Flink 的核心层 API。一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几部分构成: Flink 程序可以在各种上下文环境中运行:我们可以在本地 JVM 中执行程序,也可以提交到远程集群上运行。 不同的环境,代码的提交运行的过程会

    2024年01月22日
    浏览(59)
  • Flink核心API之DataStream(基础常用算子)

    (一)Flink核心API Flink中提供了4种不同层次的API,每种API在简洁和易表达之间有自己的权衡,适用于不同的场景。目前上面3个会用得比较多。 低级API(Stateful Stream Processing):提供了对时间和状态的细粒度控制,简洁性和易用性较差, 主要应用在一些复杂事件处理逻辑上。 核心

    2024年01月22日
    浏览(46)
  • 【Flink】DataStream API使用之源算子(Source)

    创建环境之后,就可以构建数据的业务处理逻辑了,Flink可以从各种来源获取数据,然后构建DataStream进项转换。一般将数据的输入来源称为数据源(data source),而读取数据的算子就叫做源算子(source operator)。所以,Source就是整个程序的输入端。 Flink中添加source的方式,是

    2024年02月10日
    浏览(38)
  • Flink|《Flink 官方文档 - DataStream API - 用户自定义 Functions》学习笔记 + 源码分析

    学习文档:Flink 官方文档 - DataStream API - 用户自定义 Functions 学习笔记如下: 用户可以通过实现接口来完成自定义 Functions。 实现接口并使用的样例: 使用匿名类实现的样例: 使用 Lambda 表达式实现(Java 8)样例: 所有的 Flink 函数类都有其 Rich 版本,在 Rick function 中,可以获

    2024年01月18日
    浏览(48)
  • 【Flink-1.17-教程】-【四】Flink DataStream API(5)转换算子(Transformation)【分流】

    所谓 “分流” ,就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个 DataStream ,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。 其实根据条件筛选数据的需求,本身非常容易实现:只要针对同一条流多次独立调用 .filter() 方法进行筛选

    2024年01月24日
    浏览(49)
  • 21、Flink 的table API与DataStream API 集成(完整版)

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月04日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包