【深度学习_TensorFlow】梯度下降

这篇具有很好参考价值的文章主要介绍了【深度学习_TensorFlow】梯度下降。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

写在前面

一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱


写在中间

线性回归方程


如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线

但是,如果我们选取的这两个点不在直线上,而是存在误差(暂且称作观测误差),这样求出的直线就会和原直线相差很大,我们应该怎样做呢?首先肯定不能只通过两个点,就武断地求出这条直线。

【深度学习_TensorFlow】梯度下降,# TensorFlow深度学习,深度学习,tensorflow,人工智能

我们通常尽可能多地使用分布在直线周围的点,也可能不存在一条直线完美的穿过所有采样点。那么,退而求其次,我们希望能找到一条比较“好”的位于采样点中间的直线。那么怎么衡量“好”与“不好”呢?一个很自然的想法就是,求出当前模型的所有采样点上的预测值𝑤𝑥(𝑖) + 𝑏与真实值𝑦(𝑖)之间的差的平方和作为总误差 L \mathcal{L} L,然后搜索一组参数 w ∗ , b ∗ w^{*},b^{*} w,b使得 L \mathcal{L} L最小,对应的直线就是我们要寻找的最优直线。

w ∗ , b ∗ = arg ⁡ min ⁡ w , b 1 n ∑ i = 1 n ( w x ( i ) + b − y ( i ) ) 2 w^*,b^*=\arg\min_{w,b}\frac{1}{n}\sum_{i=1}^{n}\bigl(wx^{(i)}+b-y^{(i)}\bigr)^2 w,b=argminw,bn1i=1n(wx(i)+by(i))2

最后再通过梯度下降法来不断优化参数 w ∗ , b ∗ w^{*},b^{*} w,b

有基础的小伙伴们可能知道求误差的方法其实就是均方误差函数,不懂得可以看这篇文章补充养分《误差函数》 ,我们这篇文章就侧重梯度下降。

梯度下降


函数的梯度定义为函数对各个自变量的偏导数组成的向量。不会的话,翻翻高等数学下册书。

举个例子,对于曲面函数𝑧 = 𝑓(𝑥, 𝑦),函数对自变量𝑥的偏导数记为 ∂ z ∂ x \frac{\partial z}{\partial x} xz,函数对自变量𝑦的偏导数记为 ∂ z ∂ y \frac{\partial z}{\partial y} yz,则梯度∇𝑓为向量 ( ∂ z ∂ x , ∂ z ∂ y ) ({\frac{\partial z}{\partial x}},{\frac{\partial z}{\partial y}}) (xz,yz),梯度的方向总是指向当前位置函数值增速最大的方向,函数曲面越陡峭,梯度的模也越大。

函数在各处的梯度方向∇𝑓总是指向函数值增大的方向,那么梯度的反方向−∇𝑓应指向函数值减少的方向。利用这一性质,我们只需要按照下式来更新参数,,其中𝜂用来缩放梯度向量,一般设置为某较小的值,如 0.01、0.001 等。

x ′ = x − η ⋅ d y d x x'=x-\eta\cdot\frac{\mathrm{d}y}{\mathrm{d}x} x=xηdxdy

结合上面的回归方程,我们就可对误差函数求偏导,以循环的方式更新参数 w , b w,b w,b

w ′ = w − η ∂ L ∂ w b ′ = b − η ∂ L ∂ b \begin{aligned}w'&=w-\eta\frac{\partial\mathcal{L}}{\partial w}\\\\b'&=b-\eta\frac{\partial\mathcal{L}}{\partial b}\end{aligned} wb=wηwL=bηbL

函数实现


计算过程都需要包裹在 with tf.GradientTape() as tape 上下文中,使得前向计算时能够保存计算图信息,方便自动求导操作。通过tape.gradient()函数求得网络参数到梯度信息,结果保存在 grads 列表变量中。

GradientTape()函数

GradientTape(persistent=False, watch_accessed_variables=True)

  • persistent: 布尔值,用来指定新创建的gradient
    tape是否是可持续性的。默认是False,意味着只能够调用一次GradientTape()函数,再次使用会报错

  • watch_accessed_variables:布尔值,表明GradientTape()函数是否会自动追踪任何能被训练的变量。默认是True。要是为False的话,意味着你需要手动去指定你想追踪的那些变量。

tape.watch()函数

tape.watch()用于跟踪指定类型的tensor变量。

  • 由于GradientTape()默认只对tf.Variable类型的变量进行监控。如果需要监控的变量是tensor类型,则需要tape.watch()来监控,否则输出结果将是None

tape.gradient()函数

tape.gradient(target, source)

  • target:求导的因变量

  • source:求导的自变量

import tensorflow as tf

w = tf.constant(1.)
x = tf.constant(2.)
y = x * w

with tf.GradientTape() as tape:
    tape.watch([w])
    y = x * w

grads = tape.gradient(y, [w])
print(grads)

写在最后

👍🏻点赞,你的认可是我创作的动力!
⭐收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!文章来源地址https://www.toymoban.com/news/detail-625901.html

到了这里,关于【深度学习_TensorFlow】梯度下降的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 人工智能基础_机器学习015_BGD批量梯度下降代码演示_在批量梯度下降中使用逆时衰减---人工智能工作笔记0055

    人工智能基础_机器学习015_BGD批量梯度下降代码演示_在批量梯度下降中使用逆时衰减---人工智能工作笔记0055

    然后我们用代码来演示一下BGD批量梯度下降,首先启动jupyter notebook 然后我们新建一个文件 新建文件夹,然后新建一个python文件 然后我们这里用一元一次方程进行批量梯度下降. import numpy as np 导入数学计算包 X = np.random.rand(100,1)  `np.random.rand(100, 1)` 是NumPy库中的一个函数,用于

    2024年02月05日
    浏览(14)
  • 深度学习基础之梯度下降

    深度学习基础之梯度下降

    梯度下降是一种用于最小化(或最大化)损失函数的优化算法。它是机器学习和深度学习中的一个关键概念,通常用于调整学习算法中的参数。 梯度下降背后的核心思想是迭代调整参数以最小化损失函数。它的工作原理是计算损失函数相对于每个参数的梯度,并在减少损失函

    2024年02月09日
    浏览(10)
  • 【深度学习笔记】动量梯度下降法

    【深度学习笔记】动量梯度下降法

    本专栏是网易云课堂人工智能课程《神经网络与深度学习》的学习笔记,视频由网易云课堂与 deeplearning.ai 联合出品,主讲人是吴恩达 Andrew Ng 教授。感兴趣的网友可以观看网易云课堂的视频进行深入学习,视频的链接如下: 神经网络和深度学习 - 网易云课堂 也欢迎对神经网

    2024年02月15日
    浏览(10)
  • 机器学习&&深度学习——随机梯度下降算法(及其优化)

    在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优

    2024年02月15日
    浏览(11)
  • 现代C++中的从头开始深度学习:【4/8】梯度下降

            在本系列中,我们将学习如何仅使用普通和现代C++编写必须知道的深度学习算法,例如卷积、反向传播、激活函数、优化器、深度神经网络等。         在这个故事中,我们将通过引入 梯度下降 算法来介绍数据中 2D 卷积核的拟合。我们将使用卷积和 上一个故事

    2024年02月13日
    浏览(13)
  • 【深度学习实验】线性模型(二):使用NumPy实现线性模型:梯度下降法

    【深度学习实验】线性模型(二):使用NumPy实现线性模型:梯度下降法

    目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入库 1. 初始化参数 2. 线性模型 linear_model 3. 损失函数loss_function 4. 梯度计算函数compute_gradients 5. 梯度下降函数gradient_descent 6. 调用函数               使用NumPy实现线性模型:梯度下降法

    2024年02月07日
    浏览(12)
  • 深度学习基本理论下篇:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核)、深度学习面试

    深度学习基本理论下篇:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核)、深度学习面试

    深度学习面试必备 1:(MLP/激活函数/softmax/损失函数/梯度/梯度下降/学习率/反向传播/深度学习面试 深度学习面试必备 2:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核/深度学习面试 深度学习面试必备 3 :物体检测(Anchor base/NMS/softmax/损失函数/BCE/CE/zip) Momentum、

    2024年02月12日
    浏览(6)
  • 17- TensorFlow中使用Keras创建模型 (TensorFlow系列) (深度学习)

    17- TensorFlow中使用Keras创建模型 (TensorFlow系列) (深度学习)

    知识要点 Keras 是一个用 Python 编写的高级神经网络 API 数据的开方:  np.sqrt(784)       # 28 代码运行调整到 CPU 或者 GPU: 模型显示: model.summary () 创建模型: 模型创建: model = Sequential () 添加卷积层: model.add (Dense(32, activation=\\\'relu\\\', input_dim=100))  # 第一层需要 input_dim 添加dropout: mod

    2024年02月01日
    浏览(11)
  • Tensorflow入门(1)——深度学习框架Tesnsflow入门 & 环境配置 & 认识Tensorflow

    Tensorflow入门(1)——深度学习框架Tesnsflow入门 & 环境配置 & 认识Tensorflow

    1.anaconda以及Tensorflow的安装: https://blog.csdn.net/qq_33505204/article/details/81584257 2.Anaconda详细安装及使用教程: https://blog.csdn.net/ITLearnHall/article/details/81708148 3.windows平台下,TensorFlow的安装、卸载以及遇到的各种错误: https://blog.csdn.net/qq_27245699/article/details/81050035 CONDA环境安装: co

    2024年02月12日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包