大数据面试题:HBase的读写缓存

这篇具有很好参考价值的文章主要介绍了大数据面试题:HBase的读写缓存。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

面试题来源:

《大数据面试题 V4.0》

大数据面试题V3.0,523道题,679页,46w字

参考答案:

HBase上RegionServer的cache主要分为两个部分:MemStore & BlockCache

MemStore是写缓存,BlockCache是读缓存。

当数据写入HBase时,会先写入memstore,RegionServer会给每个region提供一个memstore,memstore中的数据达到系统设置的阈值后,会触发flush将memstore中的数据刷写到磁盘。

客户的读请求会先到memstore中查数据,若查不到就到blockcache中查,再查不到就会从磁盘上读,并把读入的数据同时放入blockcahce。由于BlockCache采用的是LRU策略,因此BlockCache达到上限heapsize*hfile.block.cache .size * 0.85后,会启动淘汰机制,淘汰掉最老的一批数据。

BlockCache

为了高效获取数据,HBase设置了BlockCache机制,内存中缓存block,Block大体来分为两类,一类是JVM的heap内存,一类是heap off内存;第一类的cache策略叫做LRUCache第二类Cache策略有SlabCache以及BucketCache两类。BlockCache是Region Server级别的,一个Region Server只有一个Block Cache,在Region Server启动的时候完成Block Cache的初始化工作。到目前为止,HBase先后实现了3种Block Cache方案,LRUBlockCache是最初的实现方案,也是默认的实现方案;HBase 0.92版本实现了第二种方案SlabCache;HBase 0.96之后官方提供了另一种可选方案BucketCache。

1、LRUBlockCache

LRUBlockCache是目前hbase默认的BlockCache机制,实现机制也比较简单,是使用一个ConcurrentHashMap管理BlockKey到Block的映射关系,缓存Block只需要将BlockKey和对应的Block放到该HashMap中,查询缓存就根据BlockKey从HashMap中获取即可。同时该方案采用严格的LRU淘汰算法,当BlockCache总量达到一定阈值之后就会启动淘汰机制,最近最少使用的Block会被置换出来。

LRUBlockCache将缓存分为三块:single-access区、mutil-access区、in-memory区,分别占到整个BlockCache大小的25%、50%、25%。Block Cache的实现机制核心思想是将Cache分级,这样的好处是避免Cache之间相互影响,尤其是对HBase来说像Meta表这样的Cache应该保证高优先级。

  • single-access 优先级:当一个数据块第一次从HDFS读取时,它会具有这种优先级,并且在缓存空间需要被回收(置换)时,它属于优先被考虑范围内。它的优点在于:一般被扫描(scanned)读取的数据块,相较于之后会被用到的数据块,更应该被优先清除。

  • mutil-access优先级:如果一个数据块,属于Single Access优先级,但是之后被再次访问,则它会升级为Multi Access优先级。在缓存里的内容需要被清除(置换)时,这部分内容属于次要被考虑的范围。

  • in-memory-access优先级:表示数据可以常驻内存,一般用来存放访问频繁、数据量小的数据,比如元数据,用户也可以在建表的时候通过设置列族属性IN-MEMORY= true将此列族放入in-memory区。

加入Block Cache

  • 这里假设不会对同一个已经被缓存的BlockCacheKey重复放入cache操作。

  • 根据inMemory标志创建不同类别的CachedBlock对象:若inMemory为true则创建BlockPriority.MEMORY类型,否则创建BlockPriority.SINGLE;注意,这里只有这两种类型的Cache,因为BlockPriority.MULTI在Cache Block被重复访问时才进行创建。

  • 将BlockCacheKey和创建的CachedBlock对象加入到全局的ConcurrentHashMap map中,同时做一些更新计数操作。

  • 最后判断如果加入后的Block Size大于设定的临界值且当前没有淘汰线程运行,则调用runEviction()方法启动LRU淘汰过程。其中,EvictionThread线程即是LRU淘汰的具体实现线程。

淘汰Block Cache

EvictionThread线程主要用于与主线程的同步,从而完成Block Cache的LRU淘汰过程。EvictionThread线程启动后,调用wait被阻塞住,直到EvictionThread线程的evict方法被主线程调用时执行notify,开始执行LruBlockCache的evict方法进行真正的淘汰过程:

  1. 首先获取锁,保证同一时刻只有一个淘汰线程运行;

  2. 计算得到当前Block Cache总大小currentSize及需要被淘汰释放掉的大小bytesToFree,如果bytesToFree小于等于0则不进行后续操作;

  3. 初始化创建三个BlockBucket队列,分别用于存放Single、Multi和InMemory类Block Cache,其中每个BlockBucket维护了一个CachedBlockQueue,按LRU淘汰算法维护该BlockBucket中的所有CachedBlock对象;

  4. 遍历记录所有Block Cache的全局ConcurrentHashMap,加入到相应的BlockBucket队列中;

  5. 将以上三个BlockBucket队列加入到一个优先级队列中,按照各个BlockBucket超出bucketSize的大小顺序排序(见BlockBucket的compareTo方法);

  6. 遍历优先级队列,对于每个BlockBucket,通过Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets)计算出需要释放的空间大小,这样做可以保证尽可能平均地从三个BlockBucket中释放指定的空间;具体实现过程详见BlockBucket的free方法,从其CachedBlockQueue中取出即将被淘汰掉的CachedBlock对象;

  7. 进一步调用了LruBlockCache的evictBlock方法,从全局ConcurrentHashMap中移除该CachedBlock对象,同时更新相关计数;

  8. 释放锁,完成善后工作。

弊端:随着数据从single-access区晋升到multi-access区或者长时间停留在single-access区,对应的内存对象会从young区晋升到old区,晋升到old区的Block被淘汰后变为内存垃圾,最终由CMS回收。使用LRUBlockCache缓存机制会因为CMS GC策略导致内存碎片过多,从而可能引发Full GC,触发stop-the-world。

2、SlabCache

内部结构是划分为两块,80%和20%;缓存的数据如小于等于blocksize,则放在在前面的区域(80%区域);如果block大于1x但是小于2x将会放置到后面区域(20%区域);如果大于2x则不进行缓存。和LRUBlockCache相同,SlabCache也使用LRU算法对过期Block进行淘汰。和LRUBlockCache不同的是,SlabCache淘汰Block的时候只需要将对应的bufferbyte标记为空闲,后续cache对其上的内存直接进行覆盖即可。

线上集群环境中,不同表不同列族设置的BlockSize都可能不同,很显然,默认只能存储两种固定大小Block的SlabCache方案不能满足部分用户场景。因此HBase实际实现中将SlabCache和LRUBlockCache搭配使用,称为DoubleBlockCache。一次随机读中,一个Block块从HDFS中加载出来之后会在两个Cache中分别存储一份;缓存读时首先在LRUBlockCache中查找,如果Cache Miss再在SlabCache中查找,此时如果命中再将该Block放入LRUBlockCache中。

弊端:SlabCache设计中固定大小内存设置会导致实际内存使用率比较低,而且使用LRUBlockCache缓存Block依然会因为JVM GC产生大量内存碎片。因此在HBase 0.98版本之后,该方案已经被不建议使用。

3、BucketCache

BucketCache通过配置可以工作在三种模式下:heap,offheap和file。无论工作在那种模式下,BucketCache都会申请许多带有固定大小标签的Bucket,和SlabCache一样,一种Bucket存储一种指定BlockSize的数据块,但和SlabCache不同的是,BucketCache会在初始化的时候申请14个不同大小的Bucket,而且即使在某一种Bucket空间不足的情况下,系统也会从其他Bucket空间借用内存使用,不会出现内存使用率低的情况。heap模式表示这些Bucket是从JVM Heap中申请,offheap模式使用DirectByteBuffer技术实现堆外内存存储管理,而file模式使用类似SSD的高速缓存文件存储数据块。

弊端:HBase将BucketCache和LRUBlockCache搭配使用,称为CombinedBlockCache。和DoubleBlockCache不同,系统在LRUBlockCache中主要存储Index Block和Bloom Block,而将Data Block存储在BucketCache中。因此一次随机读需要首先在LRUBlockCache中查到对应的Index Block,然后再到BucketCache查找对应数据块。BucketCache通过更加合理的设计修正了SlabCache的弊端,极大降低了JVM GC对业务请求的实际影响,但也存在一些问题,比如使用堆外内存会存在拷贝内存的问题,一定程度上会影响读写性能。文章来源地址https://www.toymoban.com/news/detail-626360.html

到了这里,关于大数据面试题:HBase的读写缓存的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据面试题:HBase为什么查询快

    面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:1)HBase为什么读快;2)HBase是根据rowkey查询,当数据量相当大的时候,是怎么读的很快的 参考答案: 1、基于LSM树的存储方式 HBase采用基于LSM树的存储方式,这种存储方式将数据分为内存和

    2024年02月12日
    浏览(42)
  • 大数据面试题:HBase的RegionServer宕机以后怎么恢复的?

    面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:1)HBase一个节点宕机了怎么办;2)HBase故障恢复 参考答案: 1、HBase常见故障 导致RegionServer故障的原因: FullGc引起长时间停顿 HBase对Jvm堆内存管理不善,未合理使用堆外内存 Jvm启动参数配

    2024年02月14日
    浏览(35)
  • HBase详解(对hbase集群搭建、读写流程、hbase的javaApi等细致入微的讲解与保姆级的图解)

    我本想用MySQL来与HBase作比较,但发现他们两者毫无可比性,因为两者运用领域不同,各自有各自的优点,就好比爬山穿登山鞋,潜水穿脚蹼一般。 一门技术的兴起,一个优秀的开源项目的存在肯定是有它所存在的意义,正如大数据一样,正是因为随着时间的发展,随着技术

    2024年02月11日
    浏览(35)
  • Hbase基本使用,读写原理,性能优化学习

    HBase简介 HBase定义 Apache HBase 是以 hdfs 为数据存储的,一种分布式、可扩展的 NoSQL 数据库 HBase数据模型 HBase 的设计理念依据 Google 的 BigTable 论文,论文中对于数据模型的首句介绍。 Bigtable 是一个稀疏的、分布式的、持久的多维排序 map。之后对于映射的解释如下: 该映射由行

    2024年02月08日
    浏览(44)
  • HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split

    1)StoreFile 保存实际数据的物理文件,StoreFile以HFile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。 2)MemStore 写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFi

    2024年01月17日
    浏览(47)
  • HBase客户端的批量写缓存BufferedMutator

    HBase数据刷写 之前提到过这个方法,那么BufferedMutator是什么?又应该如何实现呢? HBase的每一个put操作实际上是一个RPC操作,将客户端的数据传输到服务器再返回结果,这只适用于小数据量的操作,如果数据量多的话,每次put都需要建立一次RPC的连接(TCP连接),而建立连接

    2024年02月10日
    浏览(30)
  • 【面试】Hbase

    命名空间,类似于 关系型数据库的database 概念,每个命名空间下有多个表。Hbase有两个自带的命名空间,分别是hbase和default, hbase中存放的是HBase内置的表, default表是用户默认使用的命名空间。 类似于 关系型数据库的表 概念。不同的是,HBase定义表时只需要声明列族即可,不需

    2024年02月16日
    浏览(29)
  • Hbase-面试题

    自动切分,默认情况下 2.0版本,第一次region的数据达到256M,会进行切分,以后就是每达到10G切分一次,切分完成后,会进行负载均衡,均衡到其他regionserver 预分区+自定义rowkey 可以理解为预切分 比如预分区,每个regionserver会有10个region,每个region都有startrow和endrow 生产上必

    2024年02月13日
    浏览(31)
  • Hbase面试题(一)

    1.1 hbase写流程 客户端向 HBase 的 ZooKeeper 发送请求,获取写入目标表的 region 信息。ZooKeeper 返回表的 region 地址。 客户端通过 HBase 客户端 API 创建一个 Put 对象,并设置需要写入的数据。 客户端使用 region 地址向对应的 region server 发送写入请求。region server 进行数据的预处理(

    2024年02月11日
    浏览(28)
  • HBase相关面试准备问题

    1、海量存储 Hbase适合存储PB级别的海量数据,在PB级别的数,能在几十到几百毫秒内返回数据。这与Hbase的极易扩展性息息相关。正是因为Hbase良好的扩展性,才为海量数据的存储提供了便利。 2、列式存储 这里的列式存储其实说的是列族存储,Hbase是根据列族来存储数据的。

    2024年02月22日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包