数据的统计描述和分析——假设检验

这篇具有很好参考价值的文章主要介绍了数据的统计描述和分析——假设检验。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对总体X的分布律或分布参数作某种假设,根据抽取的样本观察值,运用数理统计的分析方法,检验这种假设是否正确,从而决定接受假设或拒绝假设.

1.参数检验:如果观测的分布函数类型已知,这时构造出的统计量依赖于总体的分布函数,这种检验称为参数检验.参数检验的目的往往是对总体的参数及其有关性质作出明确的判断.

2.非参数检验:如果所检验的假设并非是对某个参数作出明确的判断,因而必须要求构造出的检验统计量的分布函数不依赖于观测值的分布函数类型,这种检验叫非参数检验.如要求判断总体分布类型的检验就是非参数检验.

假设检验的一般步骤:

1. 根据实际问题提出原假设H0与备择假设H1,即说明需要检验的假设的具体内容;

2. 选择适当的统计量,并在原假设H0成立的条件下确定该统计量的分布;

3. 按问题的具体要求,选取适当的显著性水平,并根据统计量文章来源地址https://www.toymoban.com/news/detail-627664.html

到了这里,关于数据的统计描述和分析——假设检验的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python统计(二)假设检验

    DescrStatsW.ztest_mean() statsmodels.stats.weightstats.DescrStatsW.ztest_mean(value=0, alternative=\\\'two-sided\\\') 参数 说明 value 假设的均值 alternative 备择假设的形式,可选值:‘two-sided’, ‘larger’, ‘smaller’ weightstats.ztest() statsmodels.stats.weightstats.ztest(x1, x2=None, value=0, alternative=\\\'two-sided\\\') 参数 说明

    2023年04月09日
    浏览(40)
  • 统计基础:3.1_假设检验综述

      假设检验的思想和方法是根据小概率原理,具体地说当我们对问题提出原假设H0和备注假设H1,并要检验H0是否可信时,可以先假设H0是正确的,在此假设下,经过一次抽样,若发生小概率事件,可以根据“小概率事件在一次实验中几乎是不可能发生的”的理由,怀疑原假

    2024年02月11日
    浏览(39)
  • 统计学下的假设检验

            由于本人才疏学浅,再加上时间仓促,难免有疏漏之处,恳请批评指正.         数理统计: 以概率论为基础,研究如何有效的去搜集、整理、分析带随机性影响的数据         总体与样本: 研究对象的全体就称为总体          样本: 假设需要测试某一个指标

    2024年02月04日
    浏览(45)
  • 《统计学》——思考题第八章假设检验(贾俊平)

    目录 1、假设检验和参数估计有什么相同点和不同点? 2、什么是假设检验中的显著性水平?统计显著是什么意思? 3、什么是假设检验中的两类错误? 4、两类错误之间存在什么样的数量关系? 5、解释假设检验中的 P 值。 6、显著性水平与 P 值有何区别? 7、假设检验依据的

    2024年02月11日
    浏览(42)
  • 概率论与数理统计:第七章:参数估计 第八章:假设检验

    1.矩估计 p i ( θ ) p_i(θ) p i ​ ( θ ) 、 f ( x i , θ ) f(x_i,θ) f ( x i ​ , θ ) ,用矩估计法来估计未知参数θ { X ˉ = E ( X ) 1 n ∑ i = 1 n X i 2 = E ( X 2 ) left{begin{aligned} bar{X} = E(X) \\\\ dfrac{1}{n}sumlimits_{i=1}^nX_i^2 = E(X^2) end{aligned}right. ⎩ ⎨ ⎧ ​ X ˉ = n 1 ​ i = 1 ∑ n ​ X i 2 ​ = ​ E

    2024年02月11日
    浏览(46)
  • 【SAS应用统计分析】数据的描述性统计分析

    声明:本文知识参考内容来自网络,如有侵权请联系删除。本文还参照了B站up主庄7的课程内容【公开课】数据分析与SAS【15课】 目录 实验原理 描述性统计量 1.反映数据集中趋势的特征量 2.反映数据离散程度的特征量 3.反映数据分布形状的特征量 数据的图形描述 直方图 箱线

    2024年02月01日
    浏览(49)
  • 使用Python进行数据分析——描述性统计分析

    大家好,描述性统计分析主要是指求一组数据的平均值、中位数、众数、极差、方差和标准差等指标,通过这些指标来发现这组数据的分布状态、数字特征等内在规律。在Python中进行描述性统计分析,可以借助Numpy、Pandas、SciPy等科学计算模块计算出指标,然后用绘图模块Ma

    2024年02月07日
    浏览(51)
  • 第3章-指标体系与数据可视化-3.2-描述性统计分析与绘图

    目录 变量的度量类型 变量的分布类型 正态分布 对数正态分布  伽马分布

    2024年02月07日
    浏览(41)
  • 【100天精通Python】Day57:Python 数据分析_Pandas数据描述性统计,分组聚合,数据透视表和相关性分析

    目录 1 描述性统计(Descriptive Statistics) 2 数据分组和聚合 3 数据透视表 4 相关性分析

    2024年02月07日
    浏览(59)
  • 假设检验/T检验/F检验/Z检验/卡方检验

    ****显著性水平: 一个概率值,原假设为真时,拒绝原假设的概率,表示为 alpha 常用取值为0.01, 0.05, 0.10 ****什么是P值? p值是当原假设为真时样本观察结果及更极端结果出现的概率。 如果P值很小,说明这种情况发生的概率很小,如果这种情况还出现了,那么就有理由拒绝原

    2024年02月05日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包