第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增

这篇具有很好参考价值的文章主要介绍了第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


flody的四个应用:
  1. 多源汇最短路
  2. 传递闭包
  3. 找最小环
  4. 恰好经过k条边的最短路 倍增

多源汇最短路:1125. 牛的旅行

1125. 牛的旅行 - AcWing题库
第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

直径概念:同一连通块中,两个距离最远的点之间的距离
如何求直径?由于图中存在着两个连通块,所以直接对全图做一个flody,就能更新出任意两点间的距离,距离大于正无穷的一半时,说明两点处于不同连通块中
题目要连接两个连通块,并计算所有连接方法下,原连通块与新连通块中,最大直径的最小值

可以枚举所有的连接方式,维护出新连通块的直径最小值,将其与原连通块的两个直径比较,取三者的最小值即可
假设连接了属于不同连通块的i和j,那么经过这条边的直径等于get_dis(i, j) + dmax(i) + dmax(j),其中get_dis表示两点间的距离,dmax(i)表示在原连通块中,i与距离i最远的点的距离
那么新连通块的直径是原连通块的直径与经过连接两连通块的边的直径中的最大值

最终要在原连通块的直径与新连通块的直径最大值中取min
在计算新连通块的直径最大值时,需要在原连通块与当前新连通块的直径中取max,由于每中不同连接方式都要与原连通块的直径取max,我们可以放到最后在与之取max
先计算经过连接两连通块的边的直径的最大值,在与原连通块的直接取max

#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>

#define x first
#define y second

using namespace std;

typedef pair<double, double> PDD;

const int N = 155;
const double INF = 1e20;

int n;
PDD q[N];
double d[N][N];
double maxd[N];
char g[N][N];

double get_dist(PDD a, PDD b)
{
    double dx = a.x - b.x;
    double dy = a.y - b.y;
    return sqrt(dx * dx + dy * dy);
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ ) cin >> q[i].x >> q[i].y;
    for (int i = 0; i < n; i ++ ) cin >> g[i];

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            if (i == j) d[i][j] = 0;
            else if (g[i][j] == '1') d[i][j] = get_dist(q[i], q[j]);
            else d[i][j] = INF;

    for (int k = 0; k < n; k ++ )
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);

    double r1 = 0;
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < n; j ++ )
            if (d[i][j] < INF / 2)
                maxd[i] = max(maxd[i], d[i][j]);
        r1 = max(r1, maxd[i]);
    }

    double r2 = INF;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            if (d[i][j] > INF / 2)
                r2 = min(r2, maxd[i] + maxd[j] + get_dist(q[i], q[j]));
cout << r1 << ' ' << r2 << endl;
    printf("%.6lf\n", max(r1, r2));

    return 0;
}

传递闭包:343. 排序

343. 排序 - AcWing题库
第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

将简洁相连的点连接起来,成为传递闭包
用flody可以在 O ( n 3 ) O(n^3) O(n3)的时间复杂度内计算出传递闭包
用邻接矩阵g存储图,传递闭包保存在矩阵d上
g[i][j]为1,表示存在一条从i到j的边,g[i][j]为0表示不存在
初始化:d[i][j] = g[i][j]
flody的更新换为:
d[i][j] |= d[i][k] && d[k][j]

第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

题目中的小于关系就是一条边,每次读取一个小于关系,就在图中添加一条边,然后求传递闭包
三种情况:

  1. 矛盾:此时d[i][[i] = 1,表示i存在自环。因为d[i][j] == 1 && d[j][i] == 1,求完传递闭包后d[i][i] = 1
  2. 情况未确定,d[i][j]d[j][i]都为0,表示i和j之间没有边,即没有小于关系
  3. 情况确定,遍历完d数组,无以上情况,此时情况确定

当情况确定时,如何按小于关系输出变量? O ( n 2 ) O(n^2) O(n2)地暴力搜索所有点,将已经输出的变量进行标记,若当前点是某一条边的终点并且起点未被标记,说明存在小于当前变量的变量,且未被输出
若当前变量不是任意一条边的终点或者起点已经被标记,那么输出该变量并标记

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 26;

int n, m;
bool g[N][N], d[N][N];
bool st[N];

void floyd()
{
    memcpy(d, g, sizeof d);

    for (int k = 0; k < n; k ++ )
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] |= d[i][k] && d[k][j];
}

int check()
{
    for (int i = 0; i < n; i ++ )
        if (d[i][i])
            return 2;

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < i; j ++ )
            if (!d[i][j] && !d[j][i])
                return 0;

    return 1;
}

char get_min()
{
    for (int i = 0; i < n; i ++ )
        if (!st[i])
        {
            bool flag = true;
            for (int j = 0; j < n; j ++ )
                if (!st[j] && d[j][i])
                {
                    flag = false;
                    break;
                }
            if (flag)
            {
                st[i] = true;
                return 'A' + i;
            }
        }
}

int main()
{
    while (cin >> n >> m, n || m)
    {
        memset(g, 0, sizeof g);
        int type = 0, t;
        for (int i = 1; i <= m; i ++ )
        {
            char str[5];
            cin >> str;
            int a = str[0] - 'A', b = str[2] - 'A';

            if (!type)
            {
                g[a][b] = 1;
                floyd();
                type = check();
                if (type) t = i;
            }
        }

        if (!type) puts("Sorted sequence cannot be determined.");
        else if (type == 2) printf("Inconsistency found after %d relations.\n", t);
        else
        {
            memset(st, 0, sizeof st);
            printf("Sorted sequence determined after %d relations: ", t);
            for (int i = 0; i < n; i ++ ) printf("%c", get_min());
            printf(".\n");
        }
    }

    return 0;
}

最小环:344. 观光之旅

344. 观光之旅 - AcWing题库
第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

如何求第k类的最小环?
思考flody的三重循环,在第一重k循环时,我们已经知道从i到j只经过1~k-1这些点的最短路径
若i,j,k三者能构成环,那么i和k直接相连,i和j也直接相连
第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

此时i,j,k构成的最小环的长度就等于d[i][j] + g[i][k] + g[k][j]
d[i][j]为i到j的最短距离
所以在循环k时,就可以枚举所有的i和j,得到包含i,j,k三点的最小环,在这些最小环中取min即可

此外,还需要求具体方案
只需要在更新的时候:d[i][j] > d[i][k] + d[k][j]时,记录i到j的最短路经过了k即可,即pos[i][j] = k
求i到j的最短路时,采用递归的方式,get_path(i, j),该函数将顺序输出i到j的最短路中,除了i和j的所有中间点
get_path(i, j),通过pos[i][j]的值,将i到j划分称i到k到j,递归get_path(i, k)get_path(k, j),直到pos[i][j]为0,说明i到j之间无之间点,即两点之间相连

#include <iostream>
#include <cstring>
using namespace std;

typedef long long LL;
const int N = 110, M = 20010, INF = 0x3f3f3f3f;
int g[N][N], d[N][N];
int path[N], cnt;
int pos[N][N];
int n, m;

void get_path(int i, int j)
{
    if (pos[i][j] == 0) return;
    int k = pos[i][j];
    get_path(i, k);
    path[cnt ++ ] = k;
    get_path(k, j);
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(g, 0x3f, sizeof(g));
    for (int i = 1; i <= n; ++ i ) g[i][i] = 0;
    for (int i = 1; i <= m; ++ i )
    {
        int x, y, d;
        scanf("%d%d%d", &x, &y, &d);
        g[x][y] = g[y][x] = min(g[x][y], d);
    }
    
    memcpy(d, g, sizeof(g));
    int res = INF;
    for (int k = 1; k <= n; ++ k )
    {
        for (int i = 1; i < k; ++ i  )
            for (int j = i + 1; j < k; ++ j )
            {
                if (res > (LL)d[i][j] + g[i][k] + g[k][j])
                {
                    res = d[i][j] + g[i][k] + g[k][j];
                    cnt = 0;
                    path[cnt ++ ] = k; // 从k开始记录环
                    path[cnt ++ ] = i;
                    get_path(i, j);
                    path[cnt ++ ] = j;
                }
            }

        for (int i = 1; i <= n; ++ i )
            for (int j = 1; j <= n; ++ j)
                if (d[i][j] > d[i][k] + d[k][j])
                {
                    d[i][j] = d[i][k] + d[k][j];
                    pos[i][j] = k;
                }
    }
    
    if (res == INF) puts("No solution.");
    else for (int i = 0; i < cnt; ++ i ) printf("%d ", path[i]);
        
    return 0;
}

一些需要注意的地方:res > (LL)d[i][j] + g[i][k] + g[k][j]
不开LL的话,可能三个INF相加会导致爆int
枚举最小环时,j从i+1开始,保证j比i的同时,也保证最小环中至少有三个点


没看懂,先跳过

345. 牛站

345. 牛站 - AcWing题库
第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法

flody的变形,表示的状态发生变化, f ( k , i , j ) f(k, i, j) f(k,i,j)表示从i到j,恰好经过k条边的最短路
d [ a + b , i , j ] = d [ a , i , k ] + d [ b , k , j ] d[a+b, i, j] = d[a, i, k] + d[b, k, j] d[a+b,i,j]=d[a,i,k]+d[b,k,j]
从i到j恰好经过a+b条边的最短路径,假设中间点为k,将路径划分称两段,经过a条边从i到k,经过b条边从k到j。两段分别取最短路径,相加得到我们需要的最短路径
枚举所有的k,取min后就能得到 d [ a + b , i , j ] d[a+b, i, j] d[a+b,i,j]
枚举所有的k后,枚举不同的i和j,转换成代码就是flody的形式

第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增,AcWing算法提高课 课程记录,图论,算法文章来源地址https://www.toymoban.com/news/detail-627815.html

到了这里,关于第三章 图论 No.3 flody之多源汇最短路,传递闭包,最小环与倍增的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第三章 图论 No.13拓扑排序

    拓扑序和DAG有向无环图联系在一起,通常用于最短/长路的线性求解 裸题:1191. 家谱树 1191. 家谱树 - AcWing题库 差分约束+拓扑排序:1192. 奖金 1192. 奖金 - AcWing题库 由于图中所有边权都是正数,可以直接使用topsort求解差分约束问题 根据题意,要求一个最小值,使用最长路求解

    2024年02月12日
    浏览(30)
  • 第三章 图论 No.12欧拉回路与欧拉路径

    小学一笔画问题,每条边只经过一次 判断图是否存在欧拉回路:判断图是否连通(存在孤立边),再根据有向/无向具体判断 对于无向图来说, 欧拉路径 中,起点和终点的度数为奇数,中间点的度数为偶数 起点和终点:开始和结束时必须经过一条边,其余情况为:从一条边

    2024年02月12日
    浏览(28)
  • 第三章 图论 No.10无向图的双连通分量

    无向图有两种双连通分量 边双连通分量,e-DCC 点双连通分量,v-DCC 桥:删除这条无向边后,图变得不连通,这条边被称为桥 边双连通分量:极大的不含有桥的连通区域,说明无论删除e-DCC中的哪条边,e-DCC依旧连通 (该连通分量的任意边属于原图中的某条环)。此外,任意两

    2024年02月12日
    浏览(28)
  • 第三章 图论 No.4最小生成树的简单应用

    存在边权为负的情况下,无法求最小生成树 裸题:1140. 最短网络 1140. 最短网络 - AcWing题库 套个prim的板子即可 裸题:1141. 局域网 1141. 局域网 - AcWing题库 裸题,稀疏图,套个kruskal的板子就行 需要注意的是:题目给定的图可能存在多个连通块,若使用prim算法,需要对每个连通

    2024年02月14日
    浏览(40)
  • 第三章 图论 No.11二分图,匈牙利算法与点覆盖

    257. 关押罪犯 - AcWing题库 最大最小问题,一眼二分 答案的范围在 [ 1 , 1 e 9 ] [1, 1e9] [ 1 , 1 e 9 ] 之间,二分答案,check(mid) check:将所有权值大于mid的边进行二分,若能得到二分图,返回true,否则返回false 最终将得到最优解ans,所有大于ans的边组成的图为二分图,若是图中有边

    2024年02月12日
    浏览(30)
  • 第三章 图论 No.6负环之01分数规划与特殊建图方式

    裸题:904. 虫洞 904. 虫洞 - AcWing题库 这个==真的服,调半天,还有,邻接表的大小又设置错了 01分数规划:361. 观光奶牛 361. 观光奶牛 - AcWing题库 在图论问题中,所有形如:某个部分之和除以某个部分之和最大的问题,被称为01分数规划,通常使用二分解决这类问题 根据题意

    2024年02月13日
    浏览(28)
  • 第三章 图论 No.8最近公共祖先lca, tarjan与次小生成树

    O ( m l o g n ) O(mlogn) O ( m l o g n ) ,n为节点数量,m为询问次数,lca是一种在线处理询问的算法 自己也是自己的祖先 倍增: f a ( i , j ) fa(i, j) f a ( i , j ) 表示从i开始,向上走 2 j 2^j 2 j 步走到的点 j = 0,走到父节点 j 0,分两步走,先走到 2 j − 1 2^{j-1} 2 j − 1 步再走 2 j − 1 2^{

    2024年02月13日
    浏览(29)
  • 第三章 图论 No.9有向图的强连通与半连通分量

    连通分量是无向图的概念,yxc说错了,不要被误导 强连通分量:在一个有向图中,对于分量中的任意两点u,v,一定能从u走到v,且能从v走到u。强连通分量是一些点的集合,若加入其他点,强连通分量中的任意两点就不能互相递达 半连通分量:在一个有向图中,对于分量中

    2024年02月13日
    浏览(32)
  • 第三章 图论 No.5最小生成树之虚拟源点,完全图与次小生成树

    虚拟源点:1146. 新的开始 1146. 新的开始 - AcWing题库 与一般的最小生成树问题不同,本题需要在建立电站的电井之间建立电网,在两个电站之间建立电网需要花费金额,可以看成一条具有权值的边 但是建立电网的前提是:其中一个电井需要建立电站,建立电站也需要费用 已经

    2024年02月14日
    浏览(31)
  • Floyd(多源汇最短路)

    给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。 再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出  impossible 。 数据保证图中不存在负权回路。 输入格式 第一行包含三个整

    2024年02月12日
    浏览(23)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包