一、YOLO-NAS概述
YOLO(You Only Look Once)是一种对象检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法首次在 2016 年由 Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi 发表的论文《You Only Look Once: Unified, Real-Time ObjectDetection》中被引入。
自推出以来,YOLO 凭借其高精度和速度,已成为对象检测和分类任务中最流行的算法之一。它在各种物体检测基准测试中都取得了最先进的性能。
目前,YOLO-NAS 模型架构可在开源许可下使用,但预训练的权重仅可在 Deci 的 SuperGradients 库上用于研究用途(非商业)。
“ NAS ”代表“神经架构搜索”,一种用于自动化神经网络架构设计过程的技术。NAS 不依赖手动设计和人类直觉,而是采用优化算法来发现最适合给定任务的架构。NAS 的目标是找到一种能够在准确性、计算复杂性和模型大小之间实现最佳权衡的架构。
YOLO-NAS 模型的架构是使用 Deci 的专有 NAS 技术AutoNAC “发现”的。该引擎用于确定阶段的最佳尺寸和结构,包括块类型、块数量以及每个阶段中的通道数量。 文章来源:https://www.toymoban.com/news/detail-627884.html
总之,NAS 搜索空间中有 文章来源地址https://www.toymoban.com/news/detail-627884.html
到了这里,关于机器学习笔记 - YOLO-NAS 最高效的目标检测算法之一的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!