0. 前言
学习率( learning rate
)是神经网络训练中一个重要的超参数,用于控制模型更新参数的步长大小,它决定了每次迭代中模型参数更新的幅度。学习率的选择对于训练的结果具有重要影响,学习率过高会导致模型震荡不收敛甚至发散,无法有效优化目标函数;而学习率过低则会导致收敛速度缓慢,需要更多的迭代才能达到较好的效果。本节首先介绍学习率如何影响模型训练,并通过修改学习率观察不同学习率对模型性能的影响。文章来源:https://www.toymoban.com/news/detail-627910.html
1. 学习率简介
在神经网络训练中,我们通过最小化损失函数来优化模型的参数。梯度下降是一种常用的优化算法,它通过计算文章来源地址https://www.toymoban.com/news/detail-627910.html
到了这里,关于PyTorch深度学习实战(9)——学习率优化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!