PyTorch深度学习实战(9)——学习率优化

这篇具有很好参考价值的文章主要介绍了PyTorch深度学习实战(9)——学习率优化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 前言

学习率( learning rate )是神经网络训练中一个重要的超参数,用于控制模型更新参数的步长大小,它决定了每次迭代中模型参数更新的幅度。学习率的选择对于训练的结果具有重要影响,学习率过高会导致模型震荡不收敛甚至发散,无法有效优化目标函数;而学习率过低则会导致收敛速度缓慢,需要更多的迭代才能达到较好的效果。本节首先介绍学习率如何影响模型训练,并通过修改学习率观察不同学习率对模型性能的影响。

1. 学习率简介

在神经网络训练中,我们通过最小化损失函数来优化模型的参数。梯度下降是一种常用的优化算法,它通过计算文章来源地址https://www.toymoban.com/news/detail-627910.html

到了这里,关于PyTorch深度学习实战(9)——学习率优化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch深度学习-----神经网络之线性层用法

    PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop) Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10) Pytorch深度学习--

    2024年02月14日
    浏览(37)
  • 动手学深度学习-pytorch版本(二):线性神经网络

    参考引用 动手学深度学习 神经网络的整个训练过程,包括: 定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型 。经典统计学习技术中的 线性回归 和 softmax 回归 可以视为线性神经网络 1.1 线性回归 回归 (regression) 是能为一个或多个自变量与因变量之间关系建

    2024年02月12日
    浏览(52)
  • Pytorch入门学习——快速搭建神经网络、优化器、梯度计算

    我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识,本文介绍的pytorch知识掌握也差不多. 机器学习、深度学习零基础的话B站​吴恩达、

    2024年02月14日
    浏览(42)
  • 卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

    5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和收敛慢的问题,通过固定每个批次的均值和方差来加速收敛,一般不改变模型精度。批量规范化已经被证明是一种不可或缺的方法,它适用于几乎所有图像分类器。 批量规划是一个线性变换 ,把参数的均值方差给拉

    2024年02月12日
    浏览(47)
  • 卷积神经网络——中篇【深度学习】【PyTorch】【d2l】

    5.5.1、理论部分 两个⌈ 卷积块 ⌋ 每个卷积块中的基本单元是一个⌈ 卷积层 ⌋、一个 ⌈ sigmoid激活函数 ⌋和 ⌈ 平均汇聚层 ⌋ 三个⌈ 全连接层密集块 ⌋ 早期神经网络,先使用卷积层学习图片空间信息,然后全连接层转换到类别空间。 5.5.2、代码实现 定义一个 Sequential块

    2024年02月11日
    浏览(56)
  • 卷积神经网络——上篇【深度学习】【PyTorch】【d2l】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(47)
  • 《动手学深度学习 Pytorch版》 9.4 双向循环神经网络

    之前的序列学习中假设的目标是在给定观测的情况下对下一个输出进行建模,然而也存在需要后文预测前文的情况。 数学推导太复杂了,略。 双向循环神经网络(bidirectional RNNs)添加了反向传递信息的隐藏层,以便更灵活地处理此类信息。 前向和反向隐状态的更新如下:

    2024年02月07日
    浏览(47)
  • 《Pytorch深度学习和图神经网络(卷 2)》学习笔记——第一章

    PyTorch深度学习和图神经网络(卷2)——开发应用一书配套代码: https://github.com/aianaconda/pytorch-GNN-2nd- 百度网盘链接:https://pan.baidu.com/s/1dnq5IbFjjdekAR54HLb9Pg 提取码:k7vi 压缩包密码:dszn 2012年起,在ILSVRC竞赛中获得冠军的模型如下 2012年:AlexNet 2013年:OverFeat 2014年:GoogLeNet、

    2024年02月16日
    浏览(47)
  • 《Pytorch深度学习和图神经网络(卷 1)》学习笔记——第七章

    这一章内容有点丰富,多用了一些时间,实例就有四五个。 这章内容是真多啊!(学完之后又回到开头感叹) 将图像从基础像素到局部信息再到整体信息 即将图片由低级特征到高级特征进行逐级计算,逐级累计。 计算机中对图片的处理可以理解为离散微积分的过程。 利用

    2024年02月12日
    浏览(48)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包