【深度学习_TensorFlow】感知机、全连接层、神经网络

这篇具有很好参考价值的文章主要介绍了【深度学习_TensorFlow】感知机、全连接层、神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

写在前面

感知机、全连接层、神经网络是什么意思?


感知机: 是最简单的神经网络结构,可以对线性可分的数据进行分类。

全连接层: 是神经网络中的一种层结构,每个神经元与上一层的所有神经元相连接,实现全连接。

神经网络: 是由大量神经元组成的网络结构,通过层与层之间的连接,实现对数据的表示和转换。神经网络通常由输入层、隐藏层和输出层等全连接层构成。

三者有什么关系?


  • 感知机是最简单的单层神经网络,仅有输入层和输出层。

  • 全连接层是构建多层神经网络时常用的一种层类型。

  • 神经网络通常由多层的全连接层叠加构成,从而实现比单层感知机更强大的功能。

所以可以说,感知机是简单的神经网络,全连接层是构建复杂神经网络的基础模块,神经网络通过组合多层全连接层实现复杂的功能。感知机和全连接层都是神经网络的组成要素。


写在中间

一、感知机

感知机(Perceptron)是一种简单的人工神经网络,由Frank Rosenblatt于1957年提出。它是一种线性二分类模型,主要用于解决二元分类问题。感知机的基本结构包括输入层、输出层和一个线性分类器。输入层接收输入数据,输出层提供分类结果,线性分类器将输入数据映射到输出层。

感知机模型的结构如下,它接受长度为𝑛的一维向量𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛],每个输入节点通过权值为[w1, w2, … , w𝑛]的连接汇集为变量 𝑧

z = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b z=w_{1}x_{1}+w_{2}x_{2}+\cdots+w_{n}x_{n}+b z=w1x1+w2x2++wnxn+b

写为向量的形式为:

z = w T x + b z=w^{\mathrm{T}}x+b z=wTx+b

其中𝑏称为感知机的偏置(Bias),一维向量𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑛]称为感知机的权值(Weight),𝑧 称为感知机的净活性值(Net Activation)。

感知机是线性模型,并不能处理线性不可分问题。通过在线性模型后添加激活函数后得到活性值(Activation) :

a = σ ( z ) = σ ( w T x + b ) a=\sigma(z)=\sigma(w^{\mathrm{T}}x+b) a=σ(z)=σ(wTx+b)

其中激活函数可以是阶跃函数,也可以是符号函数:

a = { 1 w T x + b ≥ 0 0 w T x + b < 0 a=\left\{\begin{matrix}1&w^\mathrm{T}x+b\geq0\\0&w^\mathrm{T}x+b<0\end{matrix}\right. a={10wTx+b0wTx+b<0

a = { 1 w T x + b ≥ 0 − 1 w T x + b < 0 a=\left\{\begin{matrix}1&\text{w}^\mathrm{T}x+b\geq0\\-1&\text{w}^\mathrm{T}x+b<0\end{matrix}\right. a={11wTx+b0wTx+b<0

【深度学习_TensorFlow】感知机、全连接层、神经网络,# TensorFlow深度学习,深度学习,tensorflow,神经网络

二、全连接层

( 1 )了解概念

全连接层(Fully Connected Layer)是神经网络中的一种层结构,主要用于将前一层的输出与后一层的输入进行连接。全连接层中的每个神经元都与前一层的所有神经元相连,因此得名。它在感知机的基础上,将不连续的阶跃激活函数换成了其它平滑连续可导的激活函数,并通过堆叠多个网络层来增强网络的表达能力

我们通过替换感知机的激活函数,同时并行堆叠多个神经元来实现多输入、多输出的网络层结构。举一个最常用的例子:

构成 3 输入节点、2 个输出节点的网络层。其中第一个输出节点的输出为:

o 1 = σ ( w 11 ⋅ x 1 + w 21 ⋅ x 2 + w 31 ⋅ x 3 + b 1 ) o_1=\sigma(w_{11}\cdot x_1+w_{21}\cdot x_2+w_{31}\cdot x_3+b_1) o1=σ(w11x1+w21x2+w31x3+b1)

第二个输出节点的输出为:

o 2 = σ ( w 12 ⋅ x 1 + w 22 ⋅ x 2 + w 32 ⋅ x 3 + b 2 ) o_{2}=\sigma(w_{12}\cdot x_{1}+w_{22}\cdot x_{2}+w_{32}\cdot x_{3}+b_{2}) o2=σ(w12x1+w22x2+w32x3+b2)

输出向量为𝒐 = [𝑜1, 𝑜2],通过矩阵可以表达为如下的形式:

[ o 1 o 2 ] = [ x 1 x 2 x 3 ] @ [ w 11 w 12 w 21 w 22 w 31 w 32 ] + [ b 1 b 2 ] \begin{bmatrix}o_1&o_2\end{bmatrix}=\begin{bmatrix}x_1&x_2&x_3\end{bmatrix}@\begin{bmatrix}w_{11}&w_{12}\\w_{21}&w_{22}\\w_{31}&w_{32}\end{bmatrix}+\begin{bmatrix}b_1&b_2\end{bmatrix} [o1o2]=[x1x2x3]@ w11w21w31w12w22w32 +[b1b2]

可以归纳为

O = X @ W + b \boldsymbol{O}=X@W+\boldsymbol{b} O=X@W+b

输入矩阵𝑿的 shape 定义为 [ b , d i n ] [b, d_{in}] [b,din],𝑏为样本数量,此处只有 1 个样本参与前向运算, d i n d_{in} din为输入节点数;权值矩阵 W 的 shape 定义为 [ d i n , d o u t ] [d_{in}, d_{out}] [din,dout] d o u t d_{out} dout为输出节点数,偏置向量 b 的 shape 定义为 [ d o u t ] [d_{out}] [dout]

2 )学会实现

全连接层本质上是矩阵的相乘和相加运算,实现并不复杂。TensorFlow 中有使用方便的层实现方式:layers.Dense(units, activation)。通过 layer.Dense 类,只需要指定输出节点数 units 和激活函数类型 activation 即可。

fc = layers.Dense(units=512, activation=tf.nn.relu)

上述通过一行代码即可以创建一层全连接层 fc,并指定输出节点数为 512,并创建内部权值张量𝑾和偏置张量𝒃。我们可以通过类内部的成员名 fc.kernelfc.bias来获取权值张量𝑾和偏置张量𝒃对象

三、神经网络

通过层层堆叠上面的全连接层,保证前一层的输出节点数与当前层的输入节点数匹配,,即可堆叠出任意层数的网络。我们把这种由神经元相互连接而成的网络叫做神经网络。

如图其中第 1~3 个全连接层在网络中间,称之为隐藏层 1、2、3,最后一个全连接层的输出作为网络的输出,称为输出层。隐藏层 1、2、3 的输出节点数分别为[256,128,64],输出层的输出节点数为 10。

【深度学习_TensorFlow】感知机、全连接层、神经网络,# TensorFlow深度学习,深度学习,tensorflow,神经网络

下面我们就用张量的方式来实现上面的神经网络

# 隐藏层 1 张量 
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) 
b1 = tf.Variable(tf.zeros([256])) 
# 隐藏层 2 张量 
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) 
b2 = tf.Variable(tf.zeros([128])) 
# 隐藏层 3 张量 
w3 = tf.Variable(tf.random.truncated_normal([128, 64], stddev=0.1)) 
b3 = tf.Variable(tf.zeros([64])) 
# 输出层张量 
w4 = tf.Variable(tf.random.truncated_normal([64, 10], stddev=0.1)) 
b4 = tf.Variable(tf.zeros([10])) 

但是随着网络层数的增加,这样手动创建一个神经网络就显得过于繁琐,我们有更为简单的层实现方式,对于这种数据依次向前传播的网络,也可以通过 Sequential 容器封装成一个网络大类对象,调用大类的前向计算函数一次即可完成所有层的前向计算,使用起来更加方便:

#  导入 Sequential 容器 
from keras import layers,Sequential 
 
#  通过 Sequential 容器封装为一个网络类 
model = Sequential([ 
    layers.Dense(256, activation=tf.nn.relu) , # 创建隐藏层 1 
    layers.Dense(128, activation=tf.nn.relu) , # 创建隐藏层 2  
    layers.Dense(64, activation=tf.nn.relu) , # 创建隐藏层 3  
    layers.Dense(10, activation=None) , # 创建输出层  
])  

out = model(x) #  前向计算得到输出  

至此,网络构建的大体流程就讲解完毕了


写在最后

👍🏻点赞,你的认可是我创作的动力!
⭐收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!文章来源地址https://www.toymoban.com/news/detail-628054.html

到了这里,关于【深度学习_TensorFlow】感知机、全连接层、神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习--全连接层、高阶应用、GPU加速

    MSE均方差 Cross Entropy Loss:交叉熵损失 Entropy 熵: 1948年,香农将统计物理中熵的概念,引申到信道通信的过程中,从而开创了信息论这门学科,把信息中排除了冗余后的平均信息量称为“信息熵”。香农定义的“熵”又被称为香农熵或信息熵,即 其中标记概率空间中所有可能

    2023年04月22日
    浏览(35)
  • 入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

    1.1 问题导入 如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输出层。根据下图给出的网络结构搭建本案例用到的全连接神经网络 1.2 手写字数据集MINST 如图所示,MNIST数据集是机器学习领域中非常经典的一个数据集,由6

    2024年02月03日
    浏览(46)
  • 深度学习基础知识-感知机+神经网络的学习

    参考书籍:(找不到资源可以后台私信我) 《深度学习入门:基于Python的理论与实现 (斋藤康毅)》 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition (Aurelien Geron [Géron, Aurélien])》 机器学习和深度学习的区别: Perceptron(感知机) 感知机就是一种接收多种输入信

    2023年04月26日
    浏览(61)
  • 【深度学习 | 感知器 & MLP(BP神经网络)】掌握感知的艺术: 感知器和MLP-BP如何革新神经网络

    🤵‍♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍 🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能硬件(虽然硬件还没开始玩,但一直

    2024年02月12日
    浏览(39)
  • 深度神经网络基础——深度学习神经网络基础 & Tensorflow在深度学习的应用

    Tensorflow入门(1)——深度学习框架Tesnsflow入门 环境配置 认识Tensorflow 深度学习框架Tesnsflow 线程+队列+IO操作 文件读取案例 神经网络的种类: 基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等 进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经

    2024年02月16日
    浏览(47)
  • 计算机视觉与深度学习-全连接神经网络-详解梯度下降从BGD到ADAM - [北邮鲁鹏]

    耿直哥讲AI:https://www.bilibili.com/video/BV18P4y1j7uH/?spm_id_from=333.337.search-card.all.clickvd_source=f6c19848d8193916be907d5b2e35bce8 计算机视觉与深度学习 北京邮电大学 鲁鹏 清晰版合集(完整版):https://www.bilibili.com/video/BV1V54y1B7K3?p=5vd_source=f6c19848d8193916be907d5b2e35bce8 梯度下降(Gradient Descent)是

    2024年02月07日
    浏览(44)
  • 计算机视觉与深度学习-全连接神经网络-训练过程-欠拟合、过拟合和Dropout- [北邮鲁鹏]

    机器学习的根本问题是 优化 与 泛化 问题。 优化 :是指调节模型以在训练数据上得到最佳性能。 泛化 :是指训练好的模型在前所未见的数据上的性能好坏。 出现过拟合,得到的模型在训练集上的准确率很高,但是在真实的场景下识别率确很低。 过拟合overfitting:指学习时

    2024年02月07日
    浏览(48)
  • 【深度学习_TensorFlow】卷积神经网络(CNN)

    这篇文章的行文思路如下: 先根据视频了解卷积和卷积神经网络的整体框架 接着了解卷积神经网络构建过程中的一些重要操作,包括内积、填充、池化。 然后介绍卷积层如何实现。 最后用卷积神经网络的开山之作(LeNet-5)来进行上手练习。 最近学习信号与系统的时候,了

    2024年02月07日
    浏览(49)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(108)
  • 【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(一)

    ​ 活动地址:CSDN21天学习挑战赛 经过前段时间研究,从LeNet-5手写数字入门到最近研究的一篇天气识别。我想干一票大的,因为我本身从事的就是C++/Qt开发,对Qt还是比较熟悉,所以我想实现一个基于Qt的界面化的一个人脸识别。 对卷积神经网络的概念比较陌生的可以看一看

    2024年02月04日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包