ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二)

这篇具有很好参考价值的文章主要介绍了ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二) 前言

最近大模型频出,但是对于我们普通人来说,如何使用这些AI工具来辅助我们的工作呢,或者参与进入我们的生活,就着现在比较热门的几个AI,写个一个提高生产力工具,现在在逻辑上已经走通了,后面会针对web页面、后台进行优化。

github链接

B站教程视频 https://www.bilibili.com/video/BV18M4y1H7XN/


第三步、调用百度语音合成包进行语音合成

这里不是智能用百度的API合成,想谷歌的,阿里云的都可以,只是我比较熟悉百度的API ps~: 关键是免费😂

class Main:
    client_id = client_id
    client_secret = client_secret

    def create_access_token(self):
        url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={self.client_id}&client_secret={self.client_secret}"
        payload = ""
        headers = {
            'Content-Type': 'application/json',
            'Accept': 'application/json'
        }
        response = requests.request("POST", url, headers=headers, data=payload)
        print("-----------向百度获取 access_token API 发起请求了-----------")
        access_token = response.json()
        access_token.update({"time": datetime.now().strftime("%Y-%m-%d")})
        with open('access_token.json', 'w') as f:
            json.dump(access_token, f)
        return access_token

    def get_access_token(self):
        if os.path.exists('access_token.json'):
            with open('access_token.json', 'r') as f:
                data = json.load(f)
            time = data.get("time")
            if time and (datetime.now() - datetime.strptime(time, '%Y-%m-%d')).days >= 29:
                return self.create_access_token()
            return data
        return self.create_access_token()

    def text_to_audio(self, text: str, index: int):
        url = "https://tsn.baidu.com/text2audio"
        text = text.encode('utf8')
        FORMATS = {3: "mp3", 4: "pcm", 5: "pcm", 6: "wav"}
        FORMAT = FORMATS[6]
        data = {
            # 合成的文本,文本长度必须小于1024GBK字节。建议每次请求文本不超过120字节,约为60个汉字或者字母数字。
            "tex": text,
            # access_token
            "tok": self.get_access_token().get("access_token"),
            # 用户唯一标识,用来计算UV值。建议填写能区分用户的机器 MAC 地址或 IMEI 码,长度为60字符以内
            "cuid": hex(uuid.getnode()),
            # 客户端类型选择,web端填写固定值1
            "ctp": "1",
            # 固定值zh。语言选择,目前只有中英文混合模式,填写固定值zh
            "lan": "zh",
            # 语速,取值0-15,默认为5中语速
            "spd": 5,
            # 音调,取值0-15,默认为5中语调
            "pit": 5,
            # 音量,基础音库取值0-9,精品音库取值0-15,默认为5中音量(取值为0时为音量最小值,并非为无声)
            "vol": 5,
            # (基础音库) 度小宇=1,度小美=0,度逍遥(基础)=3,度丫丫=4
            # (精品音库) 度逍遥(精品)=5003,度小鹿=5118,度博文=106,度小童=110,度小萌=111,度米朵=103,度小娇=5
            "per": 5003,
            # 3为mp3格式(默认); 4为pcm-16k;5为pcm-8k;6为wav(内容同pcm-16k); 注意aue=4或者6是语音识别要求的格式,但是音频内容不是语音识别要求的自然人发音,所以识别效果会受影响。
            "aue": FORMAT
        }
        data = urllib.parse.urlencode(data)
        response = requests.post(url, data)
        if response.status_code == 200:
            result_str = response.content
            save_file = str(index) + '.' + FORMAT
            audio = file_path + "audio"
            if not os.path.isdir(audio):
                os.mkdir(audio)
            audio_path = f'{audio}/' + save_file
            with open(audio_path, 'wb') as of:
                of.write(result_str)
            return audio_path
        else:
            return False

当然了,这个设计也是热拔插的,以后这些数据都会做成动态的,在页面用户可以调整,也可以选择其他的API服务商

第四步、调用百度语音合成包进行语音合成

这里就比较麻烦了,首先要搭建起 Stable Diffusion 的环境,Window 用户我记得有一个 绘世
的软件,一键就可以安装,mac用户要去官网下载。

class Main:
    sd_url = sd_url

    def draw_picture(self, obj_list):
        """
        :param obj_list:
        :return: 图片地址列表
        """
        picture_path_list = []
        for index, obj in enumerate(obj_list):
            novel_dict = {
                "enable_hr": "false",
                "denoising_strength": 0,
                "firstphase_width": 0,
                "firstphase_height": 0,
                "hr_scale": 2,
                "hr_upscaler": "string",
                "hr_second_pass_steps": 0,
                "hr_resize_x": 0,
                "hr_resize_y": 0,
                "prompt": "{}".format(obj["prompt"]),
                "styles": [
                    "string"
                ],
                "seed": -1,
                "subseed": -1,
                "subseed_strength": 0,
                "seed_resize_from_h": -1,
                "seed_resize_from_w": -1,
                "sampler_name": "DPM++ SDE Karras",
                "batch_size": 1,
                "n_iter": 1,
                "steps": 50,
                "cfg_scale": 7,
                "width": 1024,
                "height": 768,
                "restore_faces": "false",
                "tiling": "false",
                "do_not_save_samples": "false",
                "do_not_save_grid": "false",
                "negative_prompt": obj["negative"],
                "eta": 0,
                "s_churn": 0,
                "s_tmax": 0,
                "s_tmin": 0,
                "s_noise": 1,
                "override_settings": {},
                "override_settings_restore_afterwards": "true",
                "script_args": [],
                "sampler_index": "DPM++ SDE Karras",
                "script_name": "",
                "send_images": "true",
                "save_images": "true",
                "alwayson_scripts": {}
            }
            html = requests.post(self.sd_url, data=json.dumps(novel_dict))
            img_response = json.loads(html.text)
            image_bytes = base64.b64decode(img_response['images'][0])
            image = Image.open(io.BytesIO(image_bytes))
            # 图片存放
            new_path = file_path + 'picture'
            if not os.path.exists(new_path):
                os.makedirs(new_path)
            picture_name = str(obj['index']) + ".png"
            image_path = os.path.join(new_path, picture_name)
            image.save(image_path)
            picture_path_list.append(image_path)
            print(f"-----------生成第{index}张图片-----------")
        return picture_path_list

后期我看看能不能引入 Midjuorney 的服务商,或者他们官方的API ps ~ 做人没有梦想和咸鱼有什么区别🥳

第五步、使用moviepy将图片和语音结合起来生成视频

moviepy中文文档

import os
from moviepy.editor import ImageSequenceClip, AudioFileClip, concatenate_videoclips
import numpy as np

from config import file_path


class Main:
    def merge_video(self, picture_path_list: list, audio_path_list: list, name: str):
        """
        :param picture_path_list: 图片路径列表
        :param audio_path_list: 音频路径列表
        :return:
        """
        clips = []
        for index, value in enumerate(picture_path_list):

            audio_clip = AudioFileClip(audio_path_list[index])
            img_clip = ImageSequenceClip([picture_path_list[index]], audio_clip.duration)
            img_clip = img_clip.set_position(('center', 'center')).fl(self.fl_up, apply_to=['mask']).set_duration(
                audio_clip.duration)
            clip = img_clip.set_audio(audio_clip)
            clips.append(clip)
            print(f"-----------生成第{index}段视频-----------")
        print(f"-----------开始合成视频-----------")
        final_clip = concatenate_videoclips(clips)
        new_parent = file_path + "video/"
        if not os.path.exists(new_parent):
            os.makedirs(new_parent)
        final_clip.write_videofile(new_parent + name + ".mp4", fps=24, audio_codec="aac")

    def fl_up(self, gf, t):
        # 获取原始图像帧
        frame = gf(t)

        # 进行滚动效果,将图像向下滚动50像素
        height, width = frame.shape[:2]
        scroll_y = int(t * 10)  # 根据时间t计算滚动的像素数
        new_frame = np.zeros_like(frame)

        # 控制滚动的范围,避免滚动超出图像的边界
        if scroll_y < height:
            new_frame[:height - scroll_y, :] = frame[scroll_y:, :]

        return new_frame

暂时就先写到这里了,后期努力添砖加瓦。 代码已经开源了。链接 有什么问题可以在github上或者博客介绍里来问我,byebye~👋文章来源地址https://www.toymoban.com/news/detail-628263.html

到了这里,关于ChatGPT + Stable Diffusion + 百度AI + MoviePy 实现文字生成视频,小说转视频,自媒体神器!(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文字转图片生成系统-Stable diffusion稳定扩散模型

    二话不说先上效果图:(附带代码和模型资源文件)  让它画一个超级汽车在海边。。  近期百度推出了文言一心, 一个能回答问题,能根据文字描述绘制图片的服务,前期可能不太完善出现了一些失误,不过这个idea还是相当不错的   这个东西挺好哈,作为文学创作,生成

    2024年02月09日
    浏览(55)
  • 一文读懂Stable Diffusion教程,搭载高性能PC集群,实现生成式AI应用

    图生图 | PC集群 | PC Farm | Stable 文生图 | 生成式AI | Stable Diffusion 在当今计算领域中,PC集群和Stable Diffusion技术的应用已经成为不可或缺的一部分。这些技术在深度学习、AI绘画、高性能计算、人工智能、大数据、ChatGPT、AIGC等领域中都具有重要的应用价值。特别是在AI生成式内

    2024年02月10日
    浏览(51)
  • 代码实现stable-diffusion模型,你也用AI生成获得一等奖的艺术图

    Midjourney工具获奖图片 好吗,人工智能虽然已经涉及到人类的方方面面,但没有想到,AI 还能抢艺术家的饭碗,这不,一位小哥使用AI工具生成的艺术照片竟然获奖了,而且还是一等奖,且最近刚刚火起来的stable diffusion 更是让艺术家与AI发生了争执,到底AI是否抢了艺术家的饭

    2024年02月10日
    浏览(76)
  • 基于 Stable Diffusion免费快速无代码生成自己AI虚拟主播,并根据内容实现多语言播报

    如何免费快速无代码生成自己AI虚拟主播? Stable Diffusion 是一种文本到图像模型。它主要用于根据文本描述生成详细的图像。Stable Diffusion 是 midjourney 和 DALLE-2 等工具的绝佳替代品。这个工具的伟大之处在于您可以在您的计算机上本地运行它或使用 Dream Studio 或 Hugging Face 等服

    2024年02月10日
    浏览(50)
  • chatGPT生成stable diffusion 提示词

    # Stable Diffusion prompt 助理 你来充当一位有艺术气息的Stable Diffusion prompt 助理。 ## 任务 我用自然语言告诉你要生成的prompt的主题,你的任务是根据这个主题想象一幅完整的画面,然后转化成一份详细的、高质量的prompt,让Stable Diffusion可以生成高质量的图像。 ## 背景介绍 Stab

    2024年02月03日
    浏览(43)
  • 如何使用 ChatGPT 生成 Stable diffusion 提示词

    http://chat.xutongbao.top StableDiffusion是一款利用深度学习的文生图模型,支持通过使用提示词来产生新的图像,描述要包含或省略的元素。 我在这里引入StableDiffusion算法中的Prompt概念,又被称为提示符。 下面的prompt是用来指导AI绘画模型创作图像的。它们包含了图像的各种细节,

    2024年02月03日
    浏览(52)
  • 使用ChatGPT为Stable Diffusion生成画面的关键词

    在使用SD进行绘图的时候常常苦于某个换面想不到,可以通过ChatGPT模板批量生成。 先来看下演示效果。 这个例子是根据古诗《陋室铭》编写的描述。

    2024年02月11日
    浏览(57)
  • 基于百度AI实现文字和图像敏感内容审核

    百度AI 是指百度公司的人工智能技术全称。它采用深度学习技术,包括 自然语言处理、语音识别、计算机视觉、知识图谱 等,可应用于各个领域如互联网、医疗、金融、教育、汽车、物流等。百度AI的发展将帮助人类更好地理解世界和提高生活品质,接下来就通过一个小案例

    2024年02月08日
    浏览(61)
  • Stable diffusion ai图像生成本地部署教程

    前言 本文将用最干最简单的方式告诉你怎么将Stable Diffusion AI图像生成软件部署到你的本地环境 关于Stable Diffusion的实现原理和训练微调请看我其他文章 部署Stable Diffusion主要分为三个部分 下载模型(模型可以认为是被训练好的,生成图像的大脑) 部署Web UI(可通过浏览器访

    2024年02月04日
    浏览(52)
  • Stable Diffusion体验——AI生成不同风格照片

    AI绘画想必大家都有所耳闻,最近博主尝试了使用基于扩散过程的图像生成工具 Stable Diffusion 来生成多样化的图片,生成的照片质量较高。 本文将会介绍我使用Stable Diffusion 生成 不同风格照片的 过程 ,并阐述它与其他 同类工具的比较 以及它的 工作原理 。 输入的 原始图片

    2024年02月05日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包