【Flink】Table\Sql API 笔记:Row和RowData

这篇具有很好参考价值的文章主要介绍了【Flink】Table\Sql API 笔记:Row和RowData。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 根据个人理解整理,大佬们有更好的想法可以评论

  • Row

首先,Row是一种固定长度、可识别空值的复合类型,使用确定的字段顺序存储多个值。 无论字段的类型如何,每个字段都可以为空。 无法自动推断行字段的类型; 因此,无论何时生成一行,都需要提供类型信息。
Row 的主要目的是在 Flink 的 Table 和 SQL 生态系统以及其他 API 之间架起一座桥梁。 因此,行不仅由模式部分(包含字段)组成,而且还附加了一个 RowKind 用于对更改日志中的更改进行编码。 因此,可以将一行视为更改日志中的一个条目。 例如,在常规批处理方案中,更改日志将包含 RowKind.INSERT 行的有界流。 行种类与字段分开,可以使用 getKind() 和 setKind(RowKind) 访问。

Row有三种模式:

Position-based field mode:根据位置设置field

Name-based field mode:根据fieldName设置

Hybrid / named-position field mode:混合模式

  • RowData

首先,RowData是一个接口噢,有很多基于接口的实现,其中可以看下GenericRowData的构造函数,基本就明白了,传入rowKind以及参数个数。RowData是在运行时通过 Table API 或 SQL 管道传输的所有顶级接口。

  private final Object[] fields;
  private RowKind kind;

  public GenericRowData(RowKind kind, int arity) {
    this.fields = new Object[arity];
    this.kind = kind;
  }

所以总结下来可以这样理解,Row为RowData的低阶数据类型,常常用于DataStream中的使用;而RowData是通过不同的Conveter转换Row得到的高阶数据,用于TableAPI和Sql中使用 ;两者中的存储内容基本是一致的。文章来源地址https://www.toymoban.com/news/detail-628479.html

到了这里,关于【Flink】Table\Sql API 笔记:Row和RowData的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink(十五)【Flink SQL Connector、savepoint、CateLog、Table API】

           今天一天争取搞完最后这一部分,学完赶紧把 Kafka 和 Flume 学完,就要开始做实时数仓了。据说是应届生得把实时数仓搞个 80%~90% 才能差不多找个工作,太牛马了。         之前我们已经用过了一些简单的内置连接器,比如 \\\'datagen\\\' 、\\\'print\\\' ,其它的可以查看官网:

    2024年01月24日
    浏览(54)
  • 《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门

    第四章中介绍了 DataStream API 以及 DataSet API 的入门案例,本章开始介绍 Table API 以及基于此的高层应用 Flink SQL 的基础。 Flink 提供了两个关系API——Table API 和 SQL——用于统一的流和批处理。Table API 是一种针对Java、Scala和Python的语言集成查询API,它允许以非常直观的方式组合来

    2024年02月03日
    浏览(67)
  • Flink系列Table API和SQL之:时间属性

    基于时间的操作(比如时间窗口),需要定义相关的时间语义和时间数据来源的信息。在Table API和SQL中,会给表单独提供一个逻辑上的时间字段,专门用来在表处理程序中指示时间。 所谓的时间属性(time attributes),就是每个表模式结构(schema)的一部分。可以在创建表的DDL里直接定

    2023年04月09日
    浏览(43)
  • Flink(十三)Flink 的table api与sql的基本概念、通用api介绍及入门示例

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月15日
    浏览(55)
  • 42、Flink 的table api与sql之Hive Catalog

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月10日
    浏览(35)
  • Flink SQL和Table API实现消费kafka写入mysql

    1、构建 table环境 2、构建source kafka 方式一:API 方式二:Flink SQL 3、构建sink mysql  4、写入将source表写入sink表 方式一:API 方式二:Flink SQL 5、手动执行 6、测试 (1)连接kafka生产者 (2)造数据 (3)mysql查看入库情况

    2024年01月16日
    浏览(41)
  • 【flink番外篇】21、Flink 通过SQL client 和 table api注册catalog示例

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月21日
    浏览(68)
  • 24、Flink 的table api与sql之Catalogs(java api操作视图)-3

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月07日
    浏览(43)
  • 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月04日
    浏览(40)
  • Flink系列Table API和SQL之:表和流的转换

    从创建表环境开始,历经表的创建、查询转换和输出,已经可以使用Table API和SQL进行完整的流处理了。不过在应用的开发过程中,我们测试业务逻辑一般不会直接将结果直接写入到外部系统,而是在本地控制台打印输出。对于DataStream非常容易,直接调用print()方法就可以看到

    2023年04月08日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包