似然与极大似然估计

这篇具有很好参考价值的文章主要介绍了似然与极大似然估计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、似然

在统计学中,似然性(likelihood)”和“概率”有明确的区分:

概率,用于在已知一些参数的情况下,预测接下来在观测上所得到的结果;

似然性,则是用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。

以高斯分布为例,其可以用参数μ和σ来描述。采样参数估计是互逆的过程,从分布中采样是已知一些参数,得到观测结果,结果出现的可能性就用“概率”来表示。而在已知猜测结果时,对分布的参数进行估计和猜测,参数估计的可能性就用“似然"来表示。

似然与极大似然估计

 文章来源地址https://www.toymoban.com/news/detail-628914.html

二、极大似然估计(Maximum Likelihood Estimation, MLE)

在统计学中,最大似然估计(maximum likelihood estimation,MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。最大似然估计在统计学和机器学习中具有重要的价值,常用于根据观测数据推断最可能的模型参数值。

还是以高斯分布为例。我们现在有一组采样数据,我么想要知道它是来自哪一个高斯分布(即估计高斯分布的参数μ和σ),这就可以用MLE来算。

似然与极大似然估计

 每一个数据被采样的概率都可以写成一个条件概率的形式,表示从参数μ和σ的高斯分布中被采样的可能性大小。由于他们是独立同分布的,所以同时出现的概率(联合概率)体现为概率的连乘。这个连乘最大时所取的μ和σ,就是我们要找的那个高斯分布。

似然与极大似然估计        似然与极大似然估计

 连乘容易引起下溢出,可以用ln来处理。

似然与极大似然估计

 

 

补充:
1. 最小二乘估计只是极大似然估计在高斯分布下的一种特殊形式(可以数学推导得到)。

 

参考:

https://www.bilibili.com/video/BV1QM4y167oZ/?spm_id_from=333.337.search-card.all.click&vd_source=2758ef806213f133641bb5da6406140b

周志华《西瓜书》7.2 节

 

到了这里,关于似然与极大似然估计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 极大似然估计

    重新梳理一下,之前对极大似然估计的看法还是太浅了。极大似然估计比较简单,关键是弄清思想。 之前说到极大似然估计,就会直接举例子说明,例如之前的文章关于GMM中的数学基础中就提到过。 例一,有两个完全一样的箱子,箱子甲中有99个黑球,1个白球,箱子乙中有

    2023年04月09日
    浏览(44)
  • 二项分布的极大似然估计

    笔记来源:Maximum Likelihood for the Binomial Distribution, Clearly Explained!!! P ( x ∣ n , p ) P(x|n,p) P ( x ∣ n , p ) 计算二项分布的极大似然估计 L ( p ∣ n , x ) L(p|n,x) L ( p ∣ n , x )

    2024年02月11日
    浏览(59)
  • 正态分布的极大似然估计

    笔记来源:Maximum Likelihood For the Normal Distribution, step-by-step!!! 1.1.1 μ值对正态分布的影响 1.1.2 σ值对正态分布的影响 极大似然估计提供了一种给定观察数据来评估模型参数的方法 【引用自:一文搞懂极大似然估计】 P(所求 | 已知)、L(所求 | 已知) 概率是已知模型和参数,推数据

    2024年02月02日
    浏览(91)
  • 机器学习强基计划4-2:通俗理解极大似然估计和极大后验估计+实例分析

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 某

    2023年04月11日
    浏览(44)
  • 最小二乘法,极大似然估计,交叉熵的公式推导

    最小二乘法、极大似然估计和交叉熵是常用的三种损失函数。 最小二乘法是一种回归问题中常用的损失函数,用于衡量预测值与实际值之间的误差平方和。它常用于线性回归问题中,目标是最小化预测值与真实值之间的均方误差(MSE)。 极大似然估计(Maximum Likelihood Estima

    2024年02月08日
    浏览(42)
  • 统计学 - 数理统计与应用统计的区别

    目录 1. 概率与统计 2. 数理统计与应用统计 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的

    2024年02月13日
    浏览(50)
  • 《SPSS统计学基础与实证研究应用精解》视频讲解:SPSS依托统计学处理数据的应用场景

    《SPSS统计学基础与实证研究应用精解》1.4 视频讲解 视频为 《SPSS统计学基础与实证研究应用精解》张甜 杨维忠著 清华大学出版社 一书的随书赠送视频讲解1.4节内容 。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。本书旨在手把手教会使用SPSS撰写实

    2024年01月23日
    浏览(54)
  • 统计学 一元线性回归

    回归(Regression) :假定因变量与自变量之间有某种关系,并把这种关系用适当的数学模型表达出来,利用该模型根据给定的自变量来预测因变量 线性回归 :因变量和自变量之间是线性关系 非线性回归 :因变量和自变量之间是非线性关系 变量间的关系 :往往分为 函数关系

    2024年02月06日
    浏览(43)
  • 【应用统计学】方差分析

    【例7-1】 三台设备平均灌装时间分别是15.82秒、16.67秒和14.97秒。试用样本数据检验这3台机器灌装过程的时间是否存在显著不同,以便对设备的购买做出决策。( α=0.05 )  如果检验结果 接受原假设 ,则样本数据表明三台设备的平均灌装时间没有显著差异,选择任何一家提供商

    2023年04月16日
    浏览(45)
  • 统计学期末复习整理

    统计学:描述统计学和推断统计学。计量尺度:定类尺度、定序尺度、定距尺度、定比尺度。 描述统计中的测度: 1.数据分布的集中趋势 2.数据分布的离散程度 3.数据分布的形状。 离散系数 也称为标准差系数,通常是用一组数据的标准差与其平均数之比计算 C . V . = s x ‾

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包