模型量化(6):Yolov5 QAT量化训练

这篇具有很好参考价值的文章主要介绍了模型量化(6):Yolov5 QAT量化训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文章来源地址https://www.toymoban.com/news/detail-629184.html

到了这里,关于模型量化(6):Yolov5 QAT量化训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测YOLO实战应用案例100讲-基于深度学习的航拍图像YOLOv5目标检测(论文篇)(续)

    目录 基础理论及相关技术  2.1 深度学习基础理论 

    2024年04月16日
    浏览(51)
  • 【YOLO】yolov5训练自己的数据集

    【Python】朴实无华的yolov5环境配置(一)   上面前期教程中,大致介绍了yolov5开发环境的配置方法和yolov5项目的基本结构,下一步就是基于yolov5预训练模型来训练自己的数据集,这对于只是想要使用yolov5这个工具的人,还是想要深入研究yolov5类似的目标识别算法的人,都是

    2024年02月11日
    浏览(51)
  • 基于深度学习的跌倒检测系统(UI界面+YOLOv5+训练数据集)

    摘要:跌倒监测系统用于智能化监测是否有行人跌倒,通过YOLOv5的深度学习技术对视频、图片、摄像头等画面进行跌倒检测,分析并安全提醒。在介绍算法原理的同时,给出 P y t h o n 的实现代码、 P y Q t 的UI界面及训练数据集。跌倒监测系统主要用于日常生活中行人跌倒情况

    2023年04月18日
    浏览(52)
  • 深度学习—Yolov5模型配置

    搭建Yolov5要注意两个大问题:一个是在搭建YOLOv5前的环境准备,另一个是前部环境搭好后对YOLOv5的配置,运行YOLOv5自带的检验程序,便于后续的处理。 ps: 搭建环境一定要细心 + 耐心 个人配置如下: Python 3.7 + CUDA 11.6 + CUDNN 8.4.0 + Torch 1.12.0 具体配置过程请跳转下列链接: 深度

    2024年02月16日
    浏览(52)
  • 基于YOLOv5的停车位检测系统(清新UI+深度学习+训练数据集)

    摘要:基于YOLOv5的停车位检测系统用于露天停车场车位检测,应用深度学习技术检测停车位是否占用,以辅助停车场对车位进行智能化管理。在介绍算法原理的同时,给出 P y t h o n 的实现代码、训练数据集以及 P y Q t 的UI界面。博文提供了完整的Python代码和使用教程,适合新

    2024年02月11日
    浏览(48)
  • 深度学习-yolo-fastestV2使用自己的数据集训练自己的模型

    虽然说yolo-fastestV2在coco数据集上map只达到了24.1,但是应付一些类别少的问题还是可以的。主要是这个速度是真的香!简单来说就是一个快到飞起的模型。 github地址如下:yolo-fastestV2 yolo-fastestV2采用了轻量化网络shufflenetV2为backbone,笔者在这里就不详解yolo-fastestV2了,只讲怎么

    2024年02月06日
    浏览(51)
  • 如何运用yolov5训练自己的数据(手把手教你学yolo)

    在这篇博文中,我们对YOLOv5模型进行微调,用于自定义目标检测的训练和推理。 深度学习领域在2012年开始快速发展。在那个时候,这个领域还比较独特,编写深度学习程序和软件的人要么是深度学习实践者,要么是在该领域有丰富经验的研究人员,或者是具备优秀编码技能

    2024年02月07日
    浏览(142)
  • YOLOV5-模型轻量化的一些常见方法

    欢迎关注、点赞、评论! YOLOv5是一个基于深度学习的目标检测算法,是YOLO系列算法的最新版本。YOLO是You Only Look Once的缩写,意味着只需要一次前向传递就可以完成目标检测任务,因此具有非常快的检测速度和较高的精度。 相比于YOLOv4,YOLOv5在多个方面进行了改进和优化,包

    2024年01月22日
    浏览(46)
  • 吸烟行为检测系统(Python+YOLOv5深度学习模型+清新界面)

    摘要:吸烟行为检测软件用于日常场景下吸烟行为监测,快速准确识别和定位吸烟位置、记录并显示检测结果,辅助公共场所吸烟安全报警等。本文详细介绍吸烟行为检测系统,在介绍算法原理的同时,给出 P y t h o n 的实现代码、训练数据集以及 P y Q t 的UI界面。在界面中可

    2023年04月12日
    浏览(52)
  • 交通信号标志识别软件(Python+YOLOv5深度学习模型+清新界面)

    摘要:交通信号标志识别软件用于交通信号标志的检测和识别,利用机器视觉和深度学习智能识别交通标志并可视化记录,以辅助无人驾驶等。本文详细介绍交通信号标志识别软件,在介绍算法原理的同时,给出 P y t h o n 的实现代码以及 P y Q t 的UI界面。在界面中可以选择各

    2024年02月02日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包