GoogLeNet卷积神经网络-笔记

这篇具有很好参考价值的文章主要介绍了GoogLeNet卷积神经网络-笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GoogLeNet卷积神经网络-笔记

GoogLeNet是2014年ImageNet比赛的冠军,
它的主要特点是网络不仅有深度,
还在横向上具有“宽度”。
由于图像信息在空间尺寸上的巨大差异,
如何选择合适的卷积核来提取特征就显得比较困难了。
空间分布范围更广的图像信息适合用较大的卷积核来提取其特征;
而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。
为了解决这个问题,
GoogLeNet提出了一种被称为Inception模块的方案。

Inception模块结构图
GoogLeNet卷积神经网络-笔记,人工智能,开发语言 Python,笔记,深度学习
GoogleNet模型网络结构图
GoogLeNet卷积神经网络-笔记,人工智能,开发语言 Python,笔记,深度学习

测试结果为:
通过运行结果可以发现,使用GoogLeNet在眼疾筛查数据集iChallenge-PM上,loss能有效的下降,经过5个epoch的训练,在验证集上的准确率可以达到95%左右。

实测准确率为0.95左右
[validation] accuracy/loss: 0.9575/0.1915
[validation] accuracy/loss: 0.9500/0.2322

#输出结果:
PS E:\project\python> & D:/ProgramData/Anaconda3/python.exe e:/project/python/PM/GoogLeNet_PM.py
W0803 18:25:55.522811  8308 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.2, Runtime API Version: 10.2
W0803 18:25:55.532805  8308 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
116
start training ...
epoch: 0, batch_id: 0, loss is: 0.6920
epoch: 0, batch_id: 20, loss is: 0.8546
[validation] accuracy/loss: 0.7100/0.5381
epoch: 1, batch_id: 0, loss is: 0.6177
epoch: 1, batch_id: 20, loss is: 0.4581
[validation] accuracy/loss: 0.9400/0.3120
epoch: 2, batch_id: 0, loss is: 0.2858
epoch: 2, batch_id: 20, loss is: 0.5234
[validation] accuracy/loss: 0.5975/0.5757
epoch: 3, batch_id: 0, loss is: 0.6338
epoch: 3, batch_id: 20, loss is: 0.3180
[validation] accuracy/loss: 0.9575/0.1915
epoch: 4, batch_id: 0, loss is: 0.1087
epoch: 4, batch_id: 20, loss is: 0.3728
[validation] accuracy/loss: 0.9500/0.2322
PS E:\project\python>
'''

GoogleNet网模型中子图层Shape[N,C,H,W],w参数,b参数[Cout]

PS E:\project\python> & D:/ProgramData/Anaconda3/python.exe e:/project/python/PM/GoogLeNet_PM.py
W0803 20:27:47.303915 15396 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.2, Runtime API Version: 10.2
W0803 20:27:47.311910 15396 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
116
(10, 3, 224, 224)
[10, 3, 224, 224]
conv2d_0 [10, 64, 224, 224] [64, 3, 7, 7] [64]
max_pool2d_0 [10, 64, 112, 112]
conv2d_1 [10, 64, 112, 112] [64, 64, 1, 1] [64]
conv2d_2 [10, 192, 112, 112] [192, 64, 3, 3] [192]
max_pool2d_1 [10, 192, 56, 56]
print block3-1:
conv2d_3 [10, 64, 56, 56] [64, 192, 1, 1] [64]
conv2d_4 [10, 96, 56, 56] [96, 192, 1, 1] [96]
conv2d_5 [10, 128, 56, 56] [128, 96, 3, 3] [128]
conv2d_6 [10, 16, 56, 56] [16, 192, 1, 1] [16]
conv2d_7 [10, 32, 56, 56] [32, 16, 5, 5] [32]
max_pool2d_2 [10, 192, 56, 56]
conv2d_8 [10, 32, 56, 56] [32, 192, 1, 1] [32]
print block3-2:
conv2d_9 [10, 128, 56, 56] [128, 256, 1, 1] [128]
conv2d_10 [10, 128, 56, 56] [128, 256, 1, 1] [128]
conv2d_11 [10, 192, 56, 56] [192, 128, 3, 3] [192]
conv2d_12 [10, 32, 56, 56] [32, 256, 1, 1] [32]
conv2d_13 [10, 96, 56, 56] [96, 32, 5, 5] [96]
max_pool2d_3 [10, 256, 56, 56]
conv2d_14 [10, 64, 56, 56] [64, 256, 1, 1] [64]
max_pool2d_4 [10, 480, 28, 28]
print block4_1:
conv2d_15 [10, 192, 28, 28] [192, 480, 1, 1] [192]
conv2d_16 [10, 96, 28, 28] [96, 480, 1, 1] [96]
conv2d_17 [10, 208, 28, 28] [208, 96, 3, 3] [208]
conv2d_18 [10, 16, 28, 28] [16, 480, 1, 1] [16]
conv2d_19 [10, 48, 28, 28] [48, 16, 5, 5] [48]
max_pool2d_5 [10, 480, 28, 28]
conv2d_20 [10, 64, 28, 28] [64, 480, 1, 1] [64]
print block4_2:
conv2d_21 [10, 160, 28, 28] [160, 512, 1, 1] [160]
conv2d_22 [10, 112, 28, 28] [112, 512, 1, 1] [112]
conv2d_23 [10, 224, 28, 28] [224, 112, 3, 3] [224]
conv2d_24 [10, 24, 28, 28] [24, 512, 1, 1] [24]
conv2d_25 [10, 64, 28, 28] [64, 24, 5, 5] [64]
max_pool2d_6 [10, 512, 28, 28]
conv2d_26 [10, 64, 28, 28] [64, 512, 1, 1] [64]
print block4_3:
conv2d_27 [10, 128, 28, 28] [128, 512, 1, 1] [128]
conv2d_28 [10, 128, 28, 28] [128, 512, 1, 1] [128]
conv2d_29 [10, 256, 28, 28] [256, 128, 3, 3] [256]
conv2d_30 [10, 24, 28, 28] [24, 512, 1, 1] [24]
conv2d_31 [10, 64, 28, 28] [64, 24, 5, 5] [64]
max_pool2d_7 [10, 512, 28, 28]
conv2d_32 [10, 64, 28, 28] [64, 512, 1, 1] [64]
print block4_4:
conv2d_33 [10, 112, 28, 28] [112, 512, 1, 1] [112]
conv2d_34 [10, 144, 28, 28] [144, 512, 1, 1] [144]
conv2d_35 [10, 288, 28, 28] [288, 144, 3, 3] [288]
conv2d_36 [10, 32, 28, 28] [32, 512, 1, 1] [32]
conv2d_37 [10, 64, 28, 28] [64, 32, 5, 5] [64]
max_pool2d_8 [10, 512, 28, 28]
conv2d_38 [10, 64, 28, 28] [64, 512, 1, 1] [64]
print block4_5:
conv2d_39 [10, 256, 28, 28] [256, 528, 1, 1] [256]
conv2d_40 [10, 160, 28, 28] [160, 528, 1, 1] [160]
conv2d_41 [10, 320, 28, 28] [320, 160, 3, 3] [320]
conv2d_42 [10, 32, 28, 28] [32, 528, 1, 1] [32]
conv2d_43 [10, 128, 28, 28] [128, 32, 5, 5] [128]
max_pool2d_9 [10, 528, 28, 28]
conv2d_44 [10, 128, 28, 28] [128, 528, 1, 1] [128]
max_pool2d_10 [10, 832, 14, 14]
print block5_1:
conv2d_45 [10, 256, 14, 14] [256, 832, 1, 1] [256]
conv2d_46 [10, 160, 14, 14] [160, 832, 1, 1] [160]
conv2d_47 [10, 320, 14, 14] [320, 160, 3, 3] [320]
conv2d_48 [10, 32, 14, 14] [32, 832, 1, 1] [32]
conv2d_49 [10, 128, 14, 14] [128, 32, 5, 5] [128]
max_pool2d_11 [10, 832, 14, 14]
conv2d_50 [10, 128, 14, 14] [128, 832, 1, 1] [128]
print block5_2:
conv2d_51 [10, 384, 14, 14] [384, 832, 1, 1] [384]
conv2d_52 [10, 192, 14, 14] [192, 832, 1, 1] [192]
conv2d_53 [10, 384, 14, 14] [384, 192, 3, 3] [384]
conv2d_54 [10, 48, 14, 14] [48, 832, 1, 1] [48]
conv2d_55 [10, 128, 14, 14] [128, 48, 5, 5] [128]
max_pool2d_12 [10, 832, 14, 14]
conv2d_56 [10, 128, 14, 14] [128, 832, 1, 1] [128]
adaptive_avg_pool2d_0 [10, 1024, 1, 1]
linear_0 [10, 1] [1024, 1] [1]
PS E:\project\python> 

测试源代码如下所示:

# GoogLeNet模型代码
#GoogLeNet卷积神经网络-笔记
import numpy as np
import paddle
from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, Linear
## 组网
import paddle.nn.functional as F

# 定义Inception块
class Inception(paddle.nn.Layer):
    def __init__(self, c0, c1, c2, c3, c4, **kwargs):
        '''
        Inception模块的实现代码,
        
        c1,图(b)中第一条支路1x1卷积的输出通道数,数据类型是整数
        c2,图(b)中第二条支路卷积的输出通道数,数据类型是tuple或list, 
               其中c2[0]是1x1卷积的输出通道数,c2[1]是3x3
        c3,图(b)中第三条支路卷积的输出通道数,数据类型是tuple或list, 
               其中c3[0]是1x1卷积的输出通道数,c3[1]是3x3
        c4,图(b)中第一条支路1x1卷积的输出通道数,数据类型是整数
        '''
        super(Inception, self).__init__()
        # 依次创建Inception块每条支路上使用到的操作
        self.p1_1 = Conv2D(in_channels=c0,out_channels=c1, kernel_size=1, stride=1)
        self.p2_1 = Conv2D(in_channels=c0,out_channels=c2[0], kernel_size=1, stride=1)
        self.p2_2 = Conv2D(in_channels=c2[0],out_channels=c2[1], kernel_size=3, padding=1, stride=1)
        self.p3_1 = Conv2D(in_channels=c0,out_channels=c3[0], kernel_size=1, stride=1)
        self.p3_2 = Conv2D(in_channels=c3[0],out_channels=c3[1], kernel_size=5, padding=2, stride=1)
        self.p4_1 = MaxPool2D(kernel_size=3, stride=1, padding=1)
        self.p4_2 = Conv2D(in_channels=c0,out_channels=c4, kernel_size=1, stride=1)
        
        # # 新加一层batchnorm稳定收敛
        # self.batchnorm = paddle.nn.BatchNorm2D(c1+c2[1]+c3[1]+c4)

    def forward(self, x):
        # 支路1只包含一个1x1卷积
        p1 = F.relu(self.p1_1(x))
        # 支路2包含 1x1卷积 + 3x3卷积
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        # 支路3包含 1x1卷积 + 5x5卷积
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        # 支路4包含 最大池化和1x1卷积
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 将每个支路的输出特征图拼接在一起作为最终的输出结果
        return paddle.concat([p1, p2, p3, p4], axis=1)
        # return self.batchnorm()
    
class GoogLeNet(paddle.nn.Layer):
    def __init__(self):
        super(GoogLeNet, self).__init__()
        # GoogLeNet包含五个模块,每个模块后面紧跟一个池化层
        # 第一个模块包含1个卷积层
        self.conv1 = Conv2D(in_channels=3,out_channels=64, kernel_size=7, padding=3, stride=1)
        # 3x3最大池化
        self.pool1 = MaxPool2D(kernel_size=3, stride=2, padding=1)
        # 第二个模块包含2个卷积层
        self.conv2_1 = Conv2D(in_channels=64,out_channels=64, kernel_size=1, stride=1)
        self.conv2_2 = Conv2D(in_channels=64,out_channels=192, kernel_size=3, padding=1, stride=1)
        # 3x3最大池化
        self.pool2 = MaxPool2D(kernel_size=3, stride=2, padding=1)
        # 第三个模块包含2个Inception块
        self.block3_1 = Inception(192, 64, (96, 128), (16, 32), 32)
        self.block3_2 = Inception(256, 128, (128, 192), (32, 96), 64)
        # 3x3最大池化
        self.pool3 = MaxPool2D(kernel_size=3, stride=2, padding=1)
        # 第四个模块包含5个Inception块
        self.block4_1 = Inception(480, 192, (96, 208), (16, 48), 64)
        self.block4_2 = Inception(512, 160, (112, 224), (24, 64), 64)
        self.block4_3 = Inception(512, 128, (128, 256), (24, 64), 64)
        self.block4_4 = Inception(512, 112, (144, 288), (32, 64), 64)
        self.block4_5 = Inception(528, 256, (160, 320), (32, 128), 128)
        # 3x3最大池化
        self.pool4 = MaxPool2D(kernel_size=3, stride=2, padding=1)
        # 第五个模块包含2个Inception块
        self.block5_1 = Inception(832, 256, (160, 320), (32, 128), 128)
        self.block5_2 = Inception(832, 384, (192, 384), (48, 128), 128)
        # 全局池化,用的是global_pooling,不需要设置pool_stride
        self.pool5 = AdaptiveAvgPool2D(output_size=1)
        self.fc = Linear(in_features=1024, out_features=1)

    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2_2(F.relu(self.conv2_1(x)))))
        x = self.pool3(self.block3_2(self.block3_1(x)))
        x = self.block4_3(self.block4_2(self.block4_1(x)))
        x = self.pool4(self.block4_5(self.block4_4(x)))
        x = self.pool5(self.block5_2(self.block5_1(x)))
        x = paddle.reshape(x, [x.shape[0], -1])
        x = self.fc(x)
        return x

#=================================
import PM
# 创建模型
model = GoogLeNet()
print(len(model.parameters()))
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters(), weight_decay=0.001)
# 启动训练过程
PM.train_pm(model, opt)

—the—end—文章来源地址https://www.toymoban.com/news/detail-629216.html

到了这里,关于GoogLeNet卷积神经网络-笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【人工智能】— 深度神经网络、卷积神经网络(CNN)、多卷积核、全连接、池化

    Pre-training + Fine-tuning Pre-training(预训练) : 监督逐层训练是多隐层网络训练的有效手段, 每次训练一层隐层结点, 训练时将上一层隐层结点的输出作为输入, 而本层隐结点的输出作为下一层隐结点的输入, 这称为”预训练”. Fine-tuning(微调) : 在预训练全部完成后, 再对整个网络进行

    2024年02月10日
    浏览(44)
  • 人工智能-卷积神经网络

            人和动物如何把看到的图像转化为大脑中的一个概念?         我们知道计算机是把图转换为一大堆数字,通过训练可以知道这堆数字代表什么含义。但通过前面学过神经网络模型和梯度下降法的方法训练费时费力,而且一旦图片进行改变如缩放、旋转或其他变换,

    2024年02月16日
    浏览(51)
  • 人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理

    卷积神经网络(CNN),也被称为ConvNets或Convolutional Neural Networks,是一种深度学习神经网络架构,主要用于处理和分析具有网格状结构的数据,特别是图像和视频数据。CNN 在计算机视觉任务中表现出色,因为它们能够有效地捕获和识别图像中的特征,具有平移不变性(transla

    2024年02月05日
    浏览(62)
  • 人工智能之卷积神经网络(CNN)

    前言:今天我们重点探讨一下卷积神经网络(CNN)算法。 _ 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络CNN(Convolutional Neural Networks)。 1980年,K.Fukushima提

    2024年02月20日
    浏览(47)
  • 人工智能卷积神经网络,CNN,梯度下降

    CNN,是针对图像领域提出的神经网络。 得出的结论: 神经元存在局部感受区域,也称 感受野 细胞对角度有选择性 如细胞对垂直光条响应最强 细胞对运动方向有选择性 1.视觉系统是分层,分级处理的。从低到高堆叠使用卷积和池化。 2.神经系统是存在局部感受区域的。 第一

    2024年02月01日
    浏览(54)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(92)
  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(62)
  • 【人工智能与机器学习】基于卷积神经网络CNN的猫狗识别

    很巧,笔者在几月前的计算机设计大赛作品设计中也采用了猫狗识别,目前已推国赛评选中 但当时所使用的方法与本次作业要求不太一致,又重新做了一遍,下文将以本次作业要求为主,介绍CNN卷积神经网络实现猫狗识别 猫狗识别和狗品种识别是计算机视觉领域中一个重要

    2024年02月13日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包