1 引言
在使用机器学习训练模型算法的过程中,为提高模型的泛化能力、防止过拟合等目的,需要将整体数据划分为训练集和测试集两部分,训练集用于模型训练,测试集用于模型的验证。此时,使用train_test_split函数可便捷高效的实现数据训练集与测试集的划分。
2 train_test_split介绍
train_test_split
函数来自scikit-learn
库(也称为sklearn),安装命令:
pip install sklearn
函数的导入:
from sklearn.model_selection import train_test_split
2.1 函数定义
def train_test_split(*arrays,test_size=None,train_size=None,random_state=None,
shuffle=True,stratify=None,):
2.2 参数说明
- *arrays: 单个数组或元组,表示需要划分的数据集。如果传入多个数组,则必须保证每个数组的第一维大小相同。
- test_size: 测试集的大小(占总数据集的比例,值为0.0-1.0,表示测试集占总样本比例)。默认值为0.25,即将传入数据的25%作为测试集。
- train_size: 训练集的大小(占总数据集的比例,值为0.0-1.0,表示训练集占总样本比例)。默认值为None,此时和test_size互补,即训练集的大小为(1-test_size)。
- random_state: 随机数种子。可以设置一个整数,用于复现结果。默认为None。其实是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。(比如每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。)
- shuffle: 是否随机打乱数据。默认为True。
- stratify: 可选参数,用于进行分层抽样。传入标签数组,保证划分后的训练集和测试集中各类别样本比例与原始数据集相同。默认为None,即普通的随机划分。(此参数作用是保持测试集与整个数据集里的数据分类比例一致,比如有1000个数据,800个属于A类,200个属于B类。设置stratify = y_lable,test_size=0.25,split之后数据组成如下:training: 750个数据,其中600个属于A类,150个属于B类;testing: 250个数据,其中200个属于A类,50个属于B类)
2.3 返回值
该函数返回一个元组
(X_train, X_test, y_train, y_test)
,其中X_train
表示训练集的特征数据,X_test
表示测试集的特征数据,y_train
表示训练集的标签数据,y_test
表示测试集的标签数据。
2.4 注意事项
test_size
和train_size
必须至少有一个设置为非None
。- 当传入多个数组时,请确保每个数组的第一维大小相同。
- random_state要设置一个整数值,从而保证每次获取相同的训练集和测试集
- 当使用分层抽样时,请确保传入的标签数组是正确的。
3 train_test_split使用
3.1 使用train_test_split分割Iris数据
from sklearn import datasets
from sklearn.model_selection import train_test_split
# 加载Iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)
train_dataset = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))
test_dataset = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test ))
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
print(X_train)
print(X_test)
结果展示:
X_train=[[6.5 2.8 4.6 1.5]
[6.7 2.5 5.8 1.8]
[6.8 3. 5.5 2.1]
[5.1 3.5 1.4 0.3]
[6. 2.2 5. 1.5]
......此处数据省略
[4.9 3.6 1.4 0.1]]
X_test=[[5.8 4. 1.2 0.2]
[5.1 2.5 3. 1.1]
[6.6 3. 4.4 1.4]
[5.4 3.9 1.3 0.4]
[7.9 3.8 6.4 2. ]
......此处数据省略
[5.2 3.4 1.4 0.2]]
3.2 使用train_test_split分割水果识别数据
在/opt/dataset下存放着水果图片的分类数据文件夹(文件夹名称为标签),每个文件夹下存储着多张对应标签的水果图片,如下所示:
以apple文件夹为例,图片内容如下:
数据加载和分割数据集的代码如下:
from torchvision.datasets import ImageFolder
from sklearn.model_selection import train_test_split
# 图像变换
transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
), ])
# 加载数据集
dataset = ImageFolder('/opt/dataset', transform=transform)
# 划分训练集与测试集
train_dataset, valid_dataset = train_test_split(dataset, test_size=0.2, random_state=10)
batch_size = 64
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
4 sklearn介绍
train_test_split()是sklearn
.cross_validation模块中用来随机划分训练集和测试集。
sklearn,全称scikit-learn,是python中的机器学习库,建立在numpy、scipy、matplotlib等数据科学包的基础之上,涵盖了机器学习中的样例数据、数据预处理、模型验证、特征选择、分类、回归、聚类、降维等几乎所有环节,功能十分强大。与深度学习库存在pytorch、TensorFlow等多种框架可选不同,sklearn是python中传统机器学习的首选库,不存在其他竞争者。
sklearn为初学者提供了一些经典数据集,通过这些数据集可快速搭建机器学习任务、对比模型性能。数据集主要围绕分类和回归两类经典任务,对于不同需求,常用数据集简介如下:
-
load_breast_cancer:乳腺癌数据集,特征为连续数值变量,标签为0或1的二分类任务
-
load_iris:经典鸢尾花数据集,特征为连续数值变量,标签为0/1/2的三分类任务,且各类样本数量均衡,均为50个
-
load_wine:红酒数据集,与鸢尾花数据集特点类似,也是用于连续特征的3分类任务,不同之处在于各类样本数量轻微不均衡
-
load_digits:小型手写数字数据集(之所以称为小型,是因为还有大型的手写数字数据集mnist),包含0-9共10种标签,各类样本均衡,与前面3个数据集最大不同在于特征也是离散数值0—16之间,例如在进行多项式朴素贝叶斯模型、ID3树模型时,可用该数据集
-
load_boston:波士顿房价数据集,连续特征拟合房价,适用于回归任务
值得指出,sklearn除了load系列经典数据集外,还支持自定义数据集make系列和下载数据集fetch系列(load系列为安装sklearn库时自带,而fetch则需额外下载),这为更多的学习任务场景提供了便利。
sklearn中的各模型均有规范的数据输入输出格式,一般以np.array和pd.dataframe为标准格式,所以一些字符串的离散标签是不能直接用于模型训练的;同时为了加快模型训练速度和保证训练精度,往往还需对数据进行预处理,例如在以距离作为度量进行训练时则必须考虑去量纲化的问题。为此,sklearn提供了一些常用的数据预处理功能,常用的包括:
-
MinMaxScaler:归一化去量纲处理,适用于数据有明显的上下限,不会存在严重的异常值,例如考试得分0-100之间的数据可首选归一化处理
-
StandardScaler:标准化去量纲处理,适用于可能存在极大或极小的异常值,此时用MinMaxScaler时,可能因单个异常点而将其他数值变换的过于集中,而用标准正态分布去量纲则可有效避免这一问题
-
Binarizer:二值化处理,适用于将连续变量离散化
-
OneHotEncoder:独热编码,一种经典的编码方式,适用于离散标签间不存在明确的大小相对关系时。例如对于民族特征进行编码时,若将其编码为0-55的数值,则对于以距离作为度量的模型则意味着民族之间存在"大小"和"远近"关系,而用独热编码则将每个民族转换为一个由1个"1"和55个"0"组成的向量。弊端就是当分类标签过多时,容易带来维度灾难,而特征又过于稀疏文章来源:https://www.toymoban.com/news/detail-629270.html
-
Ordinary:数值编码,适用于某些标签编码为数值后不影响模型理解和训练时。例如,当民族为待分类标签时,则可将其简单编码为0-55之间的数字文章来源地址https://www.toymoban.com/news/detail-629270.html
到了这里,关于机器学习:训练集与测试集分割train_test_split的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!