Transformer & 立体视觉 & Depth Estimation

这篇具有很好参考价值的文章主要介绍了Transformer & 立体视觉 & Depth Estimation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. Intro

立体深度估计具有重要的意义,因为它能够重建三维信息。为此,在左右相机图像之间匹配相应的像素;对应像素位置的差异,即视差,可以用来推断深度并重建3D场景。最近基于深度学习的立体深度估计方法已经显示出有希望的结果,但仍然存在一些挑战。

其中一个挑战涉及使用有限的视差范围。理论上,视差值的范围可以从0到图像宽度,这取决于相机的分辨率/基线以及它们与物理对象的接近程度。然而,许多性能最好的方法都被限制在手动预先指定的视差范围内(通常最大值为192像素)[21]。这些方法依赖于“成本量”,其中计算多个候选匹配的匹配成本,并计算最终预测的差异值作为总和。这种自我施加的视差范围是必要的,以使这些方法的内存可行的实现,但不是灵活的物理场景和/或相机设置的属性。在自动驾驶和内窥镜干预等应用中,无论相机设置如何(视差值可能大于192),识别近距离物体以避免碰撞是很重要的,这表明需要放宽固定视差范围假设。

几何属性和约束,如遮挡和匹配唯一性,导致了非学习方法的成功,如[18],也经常在基于学习的方法中缺失。对于立体深度估计,遮挡区域没有有效的视差。先前的算法通常通过分段平滑假设来推断被遮挡区域的差异,这可能并不总是有效的。提供置信度估计和视差值将有利于下游分析,例如配准或场景理解算法,以便对遮挡和低置信度估计进行加权或拒绝。然而,大多数先前的方法不提供这样的信息。此外,一幅图像中的像素不应该与另一幅图像中的多个像素匹配(直到图像分辨率),因为它们对应于物理场景中的相同位置[28]。虽然这个约束对于解决歧义非常有用,但是大多数现有的基于学习的方法并没有强加它。

上述问题在很大程度上源于当代立体匹配观的缺陷,即试图构建一个成本体。从沿极线序列对序列匹配的角度考虑视差估计的方法可以避免这些挑战。这些方法并不新鲜࿰文章来源地址https://www.toymoban.com/news/detail-629485.html

到了这里,关于Transformer & 立体视觉 & Depth Estimation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包