GPU性能的简单测试脚本(pytorch版)

这篇具有很好参考价值的文章主要介绍了GPU性能的简单测试脚本(pytorch版)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

import time
import torch

# 测试gpu计算耗时
A = torch.ones(5000, 5000).to('cuda')
B = torch.ones(5000, 5000).to('cuda')
startTime2 = time.time()
for i in range(100):
    C = torch.matmul(A, B)
endTime2 = time.time()
print('gpu计算总时长:', round((endTime2 - startTime2) * 1000, 2), 'ms')

# 测试cpu计算耗时
A = torch.ones(5000, 5000)
B = torch.ones(5000, 5000)
startTime1 = time.time()
for i in range(100):
    C = torch.matmul(A, B)
endTime1 = time.time()
print('cpu计算总时长:', round((endTime1 - startTime1) * 1000, 2), 'ms')

pytorch gpu测试,小技巧,pytorch,深度学习,python文章来源地址https://www.toymoban.com/news/detail-629784.html

到了这里,关于GPU性能的简单测试脚本(pytorch版)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Windows下PyTorch深度学习环境配置(GPU)

    (路径最好全英文) (下载好后,可以创建其他虚拟环境,因为是自己学习,所以先不放步骤,有需要者可以参考B站up我是土堆的视频) 1.确定显卡型号 (如图右上角,我是1050ti) 确定显卡算力 6.1 (更多CUDA和GPU间的算力关系可参考https://zhuanlan.zhihu.com/p/544337083?utm_id=0) 确

    2024年02月16日
    浏览(58)
  • pytorch的深度学习环境安装配置(GPU版)

    目录 一些概念理解  0.anaconda配置国内镜像源  1.anaconda建立一个新的虚拟环境  2. 更新显卡驱动CUDA Driver  3. 安装pytorch 3.1 法(一):利用pip安装Pytorch 3.1.1 法(一)在线pip安装  3.1.2 法(二)本地pip安装 3.2 法(一):利用conda安装Pytorch 3.3 验证pytorch是否安装成功  4. Pychar

    2023年04月15日
    浏览(42)
  • 深度学习环境配置pytorch-GPU版本

    一、下载与安装Anaconda 官网:Free Download | Anaconda 安装时添加环境变量勾选上,这样可以减少一步操作,不用再去自己手动添加了。 二、在anaconda里面创建虚拟环境 创建虚拟环境,其中pytorch为虚拟环境名,3.8.8对应python版本号: 激活进入虚拟环境,其中pytorch为虚拟环境名:

    2024年02月14日
    浏览(47)
  • 完整教程:深度学习环境配置(GPU条件&pytorch)

    如果是python小白,强烈推荐B站小土堆的视频,讲得很清晰(但需要花些时间),地址如下: 最详细的 Windows 下 PyTorch 入门深度学习环境安装与配置 CPU GPU 版 如果有些基础,跟着往下看就行。 配置 作用 Anaconda 灵活切换python运行环境、高效使用python包 GPU 软硬件:硬件基础(

    2024年02月15日
    浏览(39)
  • 2023最新WSL搭建深度学习平台教程(适用于Docker-gpu、tensorflow-gpu、pytorch-gpu)

    2023-4-11 对于机器学习er配置环境一直是个头疼的事,尤其是在windows系统中。尤其像博主这样的懒人,又不喜欢创建虚拟环境,过段时间又忘了环境和包的人,经常会让自己电脑里装了各种深度学习环境和python包。长时间会导致自己的项目文件和环境弄的很乱。且各个项目间的

    2024年02月05日
    浏览(50)
  • PyTorch CUDA GPU高占用测试

    安装完成PyTorch、CUDA后,验证PyTorch是否能够通过CUDA高占用GPU(占用95%),特地使用以下代码测试。 这个代码会持续执行神经网络的训练任务,每次循环都进行前向传播、反向传播和参数更新,以保持高强度的GPU占用。 笔者使用的3060 Laptop GPU 占用在95%以上,代码效果显著,说

    2024年02月07日
    浏览(40)
  • 服务器GPU性能测试流程

    注意: 1、cuda-sample需要和cuda版本对应,否则会报错 2、只有进行hpcg测试时才需要设置当前环境变量为cuda-10,其它测试时设置cuda-12.0,否则在进行浮点性能测试时会报错 1.环境变量要求cuda11.8 2.cuda-samples-11.8测试包 3.hpcg测试环境 4.intel oneAPI安装 1.显存带宽 2.卡间带宽 3.浮点性

    2024年02月04日
    浏览(52)
  • pytorch实现简单的线性回归cpu版本和gpu版本

    实现步骤 准备数据 定义模型 实例化模型,实例优化器类,实例loss 循环进行梯度下降,参数更新 cpu版本实现

    2024年02月16日
    浏览(59)
  • Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch

    Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch 首先需要安装GPU环境,包括cuda和cudnn。 深度学习本质上就是训练深度卷积神经网络。 cuda:显卡能够完成并行计算任务,所有的操作是比较底层的、复杂的。 cudnn:在cuda之上有一个专门用于深度神经网络的SDK库来加速完成相

    2023年04月26日
    浏览(56)
  • 【深度学习环境搭建】Windows搭建Anaconda3、已经Pytorch的GPU版本

    无脑下载安装包安装(自行百度) 注意点: 1、用户目录下的.condarc需要配置(自定义环境的地址(别忘了给文件夹加权限);镜像源) 1、先看你的显卡版本 Win +R - 输入命令nvidia-smi,看你的cuda版本 2.下载离线版本安装包(在线也行,只要你有耐心) https://download.pytorch.org

    2024年02月02日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包