自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]

这篇具有很好参考价值的文章主要介绍了自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:

  • 基础知识
  • 快速入门
    • 安装与环境配置
    • 链(Chains)、代理(Agent:)和记忆(Memory)
    • 快速开发聊天模型
  • 模型(Models)
    • 基础知识
    • 大型语言模型(LLMs)
      • 基础知识
      • LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(Human Input LLM)
      • 缓存LLM的调用结果
      • 加载与保存LLM类、流式传输LLM与Chat Model响应和跟踪tokens使用情况
    • 聊天模型(Chat Models)
      • 基础知识
      • 使用少量示例和响应流式传输
    • 文本嵌入模型
      • Aleph Alpha、Amazon Bedrock、Azure OpenAI、Cohere等
      • Embaas、Fake Embeddings、Google Vertex AI PaLM等
  • 提示(Prompts)
    • 基础知识
    • 提示模板
      • 基础知识
      • 连接到特征存储
      • 创建自定义提示模板和含有Few-Shot示例的提示模板
      • 部分填充的提示模板和提示合成
      • 序列化提示信息
    • 示例选择器(Example Selectors)
    • 输出解析器(Output Parsers)
  • 记忆(Memory)
    • 基础知识
    • 记忆的类型
      • 会话缓存记忆、会话缓存窗口记忆和实体记忆
      • 对话知识图谱记忆、对话摘要记忆和会话摘要缓冲记忆
      • 对话令牌缓冲存储器和基于向量存储的记忆
    • 将记忆添加到LangChain组件中
    • 自定义对话记忆与自定义记忆类
    • 聊天消息记录
    • 记忆的存储与应用
  • 索引(Indexes)
    • 基础知识
    • 文档加载器(Document Loaders)
    • 文本分割器(Text Splitters)
    • 向量存储器(Vectorstores)
    • 检索器(Retrievers)
  • 链(Chains)
    • 基础知识
    • 通用功能
      • 自定义Chain和Chain的异步API
      • LLMChain和RouterChain
      • SequentialChain和TransformationChain
      • 链的保存(序列化)与加载(反序列化)
    • 链与索引
      • 文档分析和基于文档的聊天
      • 问答的基础知识
      • 图问答(Graph QA)和带来源的问答(Q&A with Sources)
      • 检索式问答
      • 文本摘要(Summarization)、HyDE和向量数据库的文本生成
  • 代理(Agents)
    • 基础知识
    • 代理类型
    • 自定义代理(Custom Agent)
    • 自定义MRKL代理
    • 带有ChatModel的LLM聊天自定义代理和自定义多操作代理(Custom MultiAction Agent)
    • 工具
      • 基础知识
      • 自定义工具(Custom Tools)
      • 多输入工具和工具输入模式
      • 人工确认工具验证和Tools作为OpenAI函数
    • 工具包(Toolkit)
    • 代理执行器(Agent Executor)
      • 结合使用Agent和VectorStore
      • 使用Agents的异步API和创建ChatGPT克隆
      • 处理解析错误、访问中间步骤和限制最大迭代次数
      • 为代理程序设置超时时间和限制最大迭代次数和为代理程序和其工具添加共享内存
    • 计划与执行
  • 回调函数(Callbacks)

默认情况下,链(Chains)和代理(Agents)是无状态的,这意味着它们将每个传入的查询视为独立的(底层的LLM和聊天模型也是如此)。在某些应用程序中(如:聊天机器人),记住先前的交互则非常重要。记忆(Memory)正是为此而设计的。 LangChain提供两种形式的记忆组件。首先,LangChain提供了用于管理和操作先前聊天消息的辅助工具,这些工具都被设计为模块化的使用方式。其次,LangChain提供了将这些工具轻松整合到链中的方法。

记忆涉及了在用户与语言模型的交互过程中保持状态的概念。用户与语言模型的交互被捕捉在ChatMessage的概念中,因此这涉及到对一系列聊天消息进行摄取、捕捉、转换和提取知识。有许多不同的方法可以实现这一点,每种方法都存在作为自己的记忆类型。通常情况下,对于每种类型的记忆,有两种使用记忆的方法。一种是独立的函数,从一系列消息中提取信息,另一种是在链中使用这种类型的记忆的方法。记忆可以返回多个信息(如:最近的 N N N条消息和所有先前消息的摘要),返回的信息可以是字符串或消息列表。在本文中,我们将介绍最简单形式的记忆:"缓冲"记忆。它只涉及保持先前所有消息的缓冲区。我们将展示如何在这里使用模块化的实用函数,然后展示它如何在链中使用(返回字符串和消息列表两种形式)。

聊天消息历史ChatMessageHistory

在大多数记忆模块的核心实用类之一是ChatMessageHistory类。这是一个超轻量级的包装器,提供了保存人类消息、AI 消息以及获取所有消息的便捷方法。如果我们在链外管理记忆,则可以直接使用此类。

from langchain.memory import ChatMessageHistory

history = ChatMessageHistory()
history.add_user_message("hi!")

history.add_ai_message("whats up?")
history.messages
    [HumanMessage(content='hi!', additional_kwargs={}, example=False),
     AIMessage(content='whats up?', additional_kwargs={}, example=False)]

ConversationBufferMemory

现在我们展示如何在链中使用这个简单的概念。首先展示ConversationBufferMemory,它只是一个对ChatMessageHistory的包装器,用于提取消息到一个变量中。我们可以首先将其提取为一个字符串:

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})

输出:

{'history': 'Human: hi!\nAI: whats up?'}

我们还可以将历史记录作为消息列表获取:

memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})

输出:

{'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),
AIMessage(content='whats up?', additional_kwargs={}, example=False)]}

在链中使用

最后,让我们看看如何在链中使用这个模块,其中我们设置了verbose=True以便查看提示。

from langchain.llms import OpenAI
from langchain.chains import ConversationChain

llm = OpenAI(temperature=0)
conversation = ConversationChain(
    llm=llm, 
    verbose=True, 
    memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
 
Current conversation:
 
Human: Hi there!
AI:
 
> Finished chain.

输出:

" Hi there! It's nice to meet you. How can I help you today?"

输入:

conversation.predict(input="I'm doing well! Just having a conversation with an AI.")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
 
Current conversation:
Human: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Human: I'm doing well! Just having a conversation with an AI.
AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about?
Human: Tell me about yourself.
AI:
 
> Finished chain.

输出:

" Sure! I'm an AI created to help people with their everyday tasks. I'm programmed to understand natural language and provide helpful information. I'm also constantly learning and updating my knowledge base so I can provide more accurate and helpful answers."

保存消息记录

我们可能经常需要保存消息,并在以后使用时加载它们。我们可以通过将消息首先转换为普通的Python字典来轻松实现此操作,然后将其保存(如:保存为JSON格式),然后再加载。以下是一个示例:

import json
from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dict

history = ChatMessageHistory()

history.add_user_message("hi!")

history.add_ai_message("whats up?")
dicts = messages_to_dict(history.messages)
dicts

输出:

[{'type': 'human',
  'data': {'content': 'hi!', 'additional_kwargs': {}, 'example': False}},
 {'type': 'ai',
  'data': {'content': 'whats up?', 'additional_kwargs': {}, 'example': False}}]

输入:

new_messages = messages_from_dict(dicts)
new_messages

输出:

[HumanMessage(content='hi!', additional_kwargs={}, example=False),
 AIMessage(content='whats up?', additional_kwargs={}, example=False)]

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/文章来源地址https://www.toymoban.com/news/detail-629852.html

到了这里,关于自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理从入门到应用——LangChain:记忆(Memory)-[聊天消息记录]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月12日
    浏览(45)
  • 自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月14日
    浏览(96)
  • 自然语言处理从入门到应用——LangChain:记忆(Memory)-[自定义对话记忆与自定义记忆类]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(39)
  • 自然语言处理从入门到应用——LangChain:快速入门-[快速开发聊天模型]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(44)
  • 自然语言处理从入门到应用——LangChain:快速入门-[安装与环境配置]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(91)
  • 自然语言处理从入门到应用——LangChain:基础知识与介绍

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(90)
  • 自然语言处理从入门到应用——LangChain:代理(Agents)-[代理类型]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(58)
  • 自然语言处理从入门到应用——LangChain:链(Chains)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月12日
    浏览(57)
  • 自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(54)
  • 自然语言处理从入门到应用——LangChain:索引(Indexes)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月12日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包