NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读

这篇具有很好参考价值的文章主要介绍了NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文信息

题目:NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields
作者:Antoni Rosinol, John J. Leonard, Luca Carlone
代码:https://github.com/ToniRV/NeRF-SLAM
来源:arxiv
时间:2022

Abstract

我们提出了一种新颖的几何和光度 3D 映射流程,用于从单目图像进行准确、实时的场景重建。

为了实现这一目标,我们利用了密集单目 SLAM 和实时分层体积神经辐射场的最新进展。
我们的见解是,密集单目 SLAM 通过提供准确的姿态估计和具有相关不确定性的深度图,提供正确的信息来实时拟合场景的神经辐射场。
通过我们提出的基于不确定性的深度损失,我们不仅实现了良好的光度精度,而且还实现了很高的几何精度。

事实上,我们提出的流程比竞争方法实现了更好的几何和光度精度(PSNR 提高了 179%,L1 深度提高了 86%),同时实时工作并且仅使用单目图像。

Introduction

我们的见解是,拥有一个密集的单目 SLAM 管道,可以输出接近完美的姿态估计,以及密集的深度图和不确定性估计,为动态构建场景的神经辐射场提供正确的信息。我们的实验表明,这确实是可能的,并且与其他方法相比,我们可以在更短的时间内实现更准确的重建。

贡献 我们提出了第一个场景重建流程,结合了密集单目 SLAM 和分层体积神经辐射场的优点。我们的方法从图像流构建准确的辐射场,不需要姿势或深度作为输入,并且实时运行。我们在单目方法的Replica数据集上实现了最先进的性能

Related Work

Dense SLAM

实现密集 SLAM 的主要挑战是
(i)由于要估计的深度变量的剪切量而导致计算复杂性
(ii)处理模糊或缺失的信息来估计场景的深度,例如无纹理表面或别名图像。

从历史上看,
第一个问题已经通过解耦姿态和深度估计来绕过。例如,DTAM [19] 通过使用与稀疏 PTAM [13] 相同的范例来实现密集 SLAM,该范例首先以解耦的方式跟踪相机姿态,然后跟踪深度。
第二个问题通常也可以通过使用提供显式深度测量的 RGB-D 或激光雷达传感器或简化深度估计的立体相机来避免。

最近关于密集SLAM的研究在这两个方面取得了令人印象深刻的成果。
为了减少深度变量的数量,CodeSLAM [4] 优化了从图像推断深度图的自动编码器的潜在变量。通过优化这些潜在变量,问题的维数显着降低,而所得的深度图仍然密集。
Tandem [14] 能够通过使用预训练的 MVSNet 式神​​经网络进行单目深度估计来仅使用单目图像重建 3D 场景,然后通过执行帧到模型光度跟踪来解耦姿势/深度问题。
Droid-SLAM [31] 表明,通过采用最先进的密集光流估计架构 [30] 来解决视觉里程计问题,可以在各种具有挑战性的数据集(例如Euroc [5] 和 TartanAir [34] 数据集),Droid-SLAM 通过使用下采样深度图来避免维数问题,随后使用学习的上采样算子进行上采样。
Rosinol 等人 [23] 进一步表明,密集单目 SLAM 可以通过边缘协方差对密集 SLAM 中估计的深度进行加权,然后将它们融合在体积表示中,从而重建场景的忠实 3D 网格。生成的网格在几何上是准确的,但由于 TSDF 表示的限制,它们的重建缺乏光度细节并且不完全完整。
我们的方法受到 Rosinol 等人 [23] 的工作的启发,其中我们将体积 TSDF 替换为分层体积神经辐射场作为我们的地图表示。通过使用辐射场,我们的方法实现了光度精确的地图并提高了重建的完整性,同时还允许同时优化姿势和地图

Neural Radiance Fields(NeRF)

虽然使用一个大型 MLP 的普通 NeRF 方法需要数小时的训练才能收敛,但几位作者表明,较小的 MLP 与 3D 空间数据结构相结合来划分场景,可以显着提高速度。

特别是,NGL​​OD [27]建议在体积网格中使用微小的 MLP,从而实现更快的重建,但不太实时。 Plenoxels [40] 通过使用球谐函数参数化方向编码进一步提高了速度,同时绕过了 MLP 的使用。最后,Instant-NGP [17] 表明,通过基于哈希的场景分层体积表示,可以实时训练神经辐射场。

Mono-SDF [41] 表明,用于单目图像深度和法线估计的最先进的深度学习模型提供了有用的信息,可以显着提高辐射场重建的收敛速度和质量。

我们的工作通过使用密集 SLAM 提供的信息来利用这些见解,该信息估计姿势和密集深度图。我们还利用密集 SLAM 输出本质上是概率性的事实,并使用当前方法中通常被丢弃的信息来对监控信号进行加权以适应辐射场。

SLAM with NeRFs

神经辐射场研究的另一个重要轴是消除其对部分已知相机姿势的依赖。这对于构建 NeRF 特别有吸引力,而无需处理数据来获取图像的相机姿势,这项任务通常很长,通常使用 COLMAP [25] 完成。

我们的工作利用了最近在密集单目 SLAM(Droid-SLAM [31])、概率体积融合(Rosinol 等人[23])和基于哈希的分层体积辐射场(Instant-NGP [17])方面的工作,实时估计场景的几何和光度图,无需深度图像或姿势。

Methodology

我们方法的主要思想是使用密集单目 SLAM 的输出来监督神经辐射场。

密集单目 SLAM 可以估计密集深度图和相机姿势,同时还提供深度和姿势的不确定性估计。有了这些信息,我们就可以训练一个具有由深度边际协方差加权的密集深度损失的辐射场。通过使用密集 SLAM 和辐射场训练的实时实现,并通过并行运行它们,我们实现了实时性能。

图 2 显示了我们管道中的信息流。我们现在解释我们的架构,从我们的跟踪前端(第 3.1 节)开始,然后是我们的映射后端(第 3.2 节)。
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读

Tracking:Dense SLAM with Covariances

我们使用 Droid-SLAM [31] 作为跟踪模块,它为每个关键帧提供密集的深度图和姿势。

从图像序列开始,Droid-SLAM 首先使用与 Raft [30] 类似的架构计算帧对 i 和 j 之间的密集光流 p i j p_{ij} pij

Raft 的核心是一个卷积 GRU(图 2 中的 ConvGRU),给定帧对之间的相关性和当前光流 pij 的猜测,计算新的流 p i j p_{ij} pij 以及每个光流的权重 Σ p i j Σ_{p_{ij}} Σpij流量测量。

通过这些流量和权重作为测量值,DroidSLAM 解决了密集束调整 (BA) 问题,其中 3D 几何形状被参数化为每个关键帧的一组逆深度图。这种结构的参数化导致了一种解决密集 BA 问题的极其有效的方法,通过将方程组线性化为熟悉的摄像机/深度箭头状块稀疏 Hessian H ∈ R ( c + p ) × ( c + p ) H \in \mathbb{R}^{(c+p)×(c+p)} HR(c+p)×(c+p),可以将其表示为线性最小二乘问题,其中 c c c p p p是相机和点的维数

为了解决线性最小二乘问题,我们采用Hessian矩阵的Schur补来计算简化的相机矩阵HT,
它不依赖于深度,并且具有更小的 R c × c \mathbb{R}^{c\times c} Rc×c维数。通过对 H T = L L T H_T = LL^T HT=LLT 进行 Cholesky 分解(其中 L 是下三角 Cholesky 因子),然后通过前后替换求解姿势 T,可以解决由此产生的关于相机位姿的较小问题。

如图 2 底部所示,给定这些姿势 T,我们可以求解深度 d。此外,给定姿势 T 和深度 D,Droid-SLAM 建议计算诱导光流,并将其作为初始猜测再次馈送到 ConvGRU 网络,如图 2 左侧所示,其中 Π 和 Π−1 ,是投影和反投影函数。图2中的蓝色箭头显示了跟踪环路,对应于Droid-SLAM。

我们进一步计算密集深度图和 Droid-SLAM 姿势的边际协方差(图 2 中的紫色箭头)。为此,我们需要利用 Hessian 的结构,我们将其按如下方式进行块划分
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
where H H H is the Hessian matrix, b b b the residuals, C C C is the block camera matrix, and P P P is the diagonal matrix corresponding to the inverse depths per pixel per keyframe. We represent by ∆ ξ ∆ξ ξ the delta updates on the lie algebra of the camera poses in S E ( 3 ) SE(3) SE(3), while ∆d is the delta update to the per-pixel inverse depths. E E E is the camera/depth off-diagonal Hessian’s block matrices, and v v v and w w w correspond to the pose and depths residuals.

密集深度 Σ d Σ_d Σd 和位姿 Σ T Σ_T ΣT 的边际协方差,如下所示:
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读

Mapping:probalilistic Volumetric NeRF

考虑到每个关键帧的密集深度图,可以对我们的神经体积进行深度监督。不幸的是,深度图由于其密度而非常嘈杂,因为即使是无纹理区域也被赋予了深度值。

图 3 显示,密集单目 SLAM 生成的点云噪声特别大,并且包含较大的异常值(图 3 中的顶部图像)。在给定这些深度图的情况下监督我们的辐射场可能会导致有偏差的重建
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读

考虑到不确定性损失,我们将映射损失表示为:
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
给定超参数 λD 平衡深度和颜色监督(我们将 λD 设置为 1.0),我们将姿势 T 和神经参数 θ 最小化。特别是,我们的深度损失由下式给出:
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
其中 D ∗ D^* D是渲染的深度, D 、 Σ D D、Σ_D DΣD是跟踪模块估计的密集深度和不确定性。

我们渲染深度 D ∗ D^* D作为预期的光线终止距离,每个像素的深度是通过沿像素光线采样 3D 位置、评估样本 i 处的密度 σ i σ_i σi 以及对所得密度进行 alpha 合成来计算的,与标准体积渲染类似:
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
其中 d i d_i di 是样本 i 沿射线的深度, δ i = d i + 1 − d i δ_i = d_{i+1} − d_i δi=di+1di是连续样本之间的距离。 σ i σ_i σi 是体积密度,通过评估样本 i 的 3D 世界坐标处的 MLP 生成。最后, T i T_i Ti是沿光线直到样本 i 的累积透射率,定义为
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
我们的颜色损失的定义如原始 NeRF [16] 中所示:
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
其中 I ∗ I^* I 是渲染的彩色图像,与深度图像类似,通过使用体积渲染进行合成。每个像素的每种颜色同样是通过沿像素的光线采样并通过 alpha 合成所得的密度和颜色来计算的: ∑ i T i ( 1 − exp ⁡ ( − σ i δ i ) ) c i \sum_{i} \mathcal{T}_{i}\left(1-\exp \left(-\sigma_{i} \delta_{i}\right)\right) \mathbf{c}_{i} iTi(1exp(σiδi))ci,其中 T i \mathcal{T}_{i} Ti 是公式 (6) 中的透射率。 c i \mathbf{c}_{i} ci 是 MLP 估计的颜色。对于给定样本 i,同时估计密度 δ i \delta_{i} δi 和颜色 c i \mathbf{c}_{i} ci

Architecture

我们的管道由跟踪Tracking线程和映射Mapping线程组成,两者都实时并行运行。
跟踪线程持续最小化关键帧活动窗口的 BA 重投影误差。
映射线程始终优化从跟踪线程接收到的所有关键帧,并且没有活动帧的滑动窗口。

当跟踪管道生成新的关键帧时,这些线程之间的唯一通信发生。在每个新关键帧上,跟踪线程将当前关键帧的姿势及其各自的图像和估计的深度图以及深度的边际协方差发送到映射线程。仅将跟踪线程的滑动优化窗口中当前可用的信息发送到映射线程。跟踪线程的活动滑动窗口最多由 8 个关键帧组成。一旦前一个关键帧和当前帧之间的平均光流高于阈值(在我们的例子中为 2.5 像素),跟踪线程就会生成新的关键帧。

映射线程还负责渲染以实现重建的交互式可视化。

Result

NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读
NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读,论文,论文阅读

Conclusion

我们证明,密集单目 SLAM 为从随意拍摄的单目视频中构建场景的 NeRF 表示提供了理想的信息。来自密集 SLAM 的估计姿态和深度图,通过其边际协方差估计进行加权,为优化基于分层散列的体积神经辐射场提供了理想的信息源。通过我们的方法,用户可以实时生成场景的光度和几何精确重建。

未来的工作可以利用我们的方法来扩展度量语义 SLAM [24] 的定义,该定义通常只考虑几何和语义属性,通过构建光度准确的表示形式。

除了度量语义 SLAM 之外,我们的方法还可以用作高级场景理解的映射引擎,例如用于构建 3D 动态场景图 [2,21,22]。文章来源地址https://www.toymoban.com/news/detail-630221.html

到了这里,关于NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch 中的“近实时”(Near Real-time)全面解析

    Elasticsearch(ES)作为一款流行的分布式搜索引擎,以其近实时(Near Real-Time, NRT)特性著称。这种特性使得ES能够在数据写入后极短的时间内(通常在毫秒至秒级别)使其可被搜索到,虽然不是绝对意义上的实时,但对于大多数应用而言已经足够接近实时,从而满足了对快速响

    2024年04月25日
    浏览(35)
  • Why choose Flink for real-time processing

    Why choose Flink [1] Streaming data more truly reflects our lifestyle (real-time chat); [2] Traditional data architecture is based on limited data sets (Spark is based on micro-batch data processing); [3] Our goal: low latency, high throughput (distributed architecture, there may be confusion in the order, for example, within 1 hour of statistics, some data

    2024年03月20日
    浏览(45)
  • 【论文阅读】【yolo系列】YOLACT Real-time Instance Segmentation

    论文链接:https://arxiv.org/pdf/1904.02689.pdf 【 实例分割 】 鉴于其重要性,大量的研究投入到实例分割的准确性。 两阶段 :Mask-RCNN [18]是一种具有代表性的两阶段实例分割方法,它首先生成候选感兴趣区域(roi),然后在第二阶段对这些roi进行分类和分割。后续工作试图通过提

    2024年02月16日
    浏览(40)
  • Publishing real-time financial data feeds using Kafka

    Good morning and welcome to this session on publishing real time financial data feeds using CCA. If you\\\'re a data feed provider, you may already have customers who are asking you to deliver your feed directly on AWS. And by the time we end this session, you should have a pretty good understanding of how to do that. My name is Rana. I am a Principal Solutions

    2024年02月03日
    浏览(48)
  • DETRs Beat YOLOs on Real-time Object Detection

    DETRs在实时目标检测中击败YOLO 问题:DETR的高计算成本,实时检测效果有待提高 解决:提出了一个实时的目标检测器 具体来说,设计了一个高效的混合编码器,通过解耦尺度内的交互和跨尺度融合来有效处理多尺度特征,并提出IoU感知查询选择,通过提供更高质量的初始对象

    2024年02月09日
    浏览(41)
  • Training-Time-Friendly Network for Real-Time Object Detection 论文学习

    目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时间久的的训练时间久的。 推理时间久的检测器一般依赖于复杂的

    2024年02月15日
    浏览(41)
  • 【读论文】3D Gaussian Splatting for Real-Time Radiance Field Rendering

    What kind of thing is this article going to do (from the abstract and conclusion, try to summarize it in one sentence) To simultaneously satisfy the requirements of efficiency and quality, this article begins by establishing a foundation with sparse points using 3D Gaussian distributions to preserve desirable space. It then progresses to optimizing anisotrop

    2024年04月09日
    浏览(44)
  • 3D Gaussian Splatting for Real-Time Radiance Field Rendering 阅读笔记

    感谢B站意の茗的讲解。 论文地址:https://arxiv.org/abs/2308.04079 项目主页:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 从已有点云模型出发(sfm),以每个点为中心建立可学习的3D高斯表达,Splatting方法进行渲染,实现高分辨率实时渲染。(推动NERF加速方向) 能用训练好的点云

    2024年01月16日
    浏览(48)
  • 【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)

    上篇我们介绍了PRT,并以Diffuse的BRDF作为例子分析了预计算的部分,包括Lighting和Light transport,如上图所示。 包括我们还提到了SH,可以用SH的有限阶近似拟合球面函数,然后计算。 这里和上篇的推导方式不太一样,我们上篇是把Lighting项用SH分解然后交换积分和求和符号,最

    2024年02月10日
    浏览(40)
  • 【论文笔记】3D Gaussian Splatting for Real-Time Radiance Field Rendering

    原文链接:https://arxiv.org/abs/2308.04079 网孔和点是最常见的3D场景表达,因其是显式的且适合基于GPU/CUDA的快速栅格化。神经辐射场(NeRF)则建立连续的场景表达便于优化,但渲染时的随机采样耗时且引入噪声。本文的方法结合了上述两种方法的优点:使用3D高斯表达和基于ti

    2024年02月04日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包