无人机自主探索FUEL:代码阅读3--执行循环顺序与部分释义

这篇具有很好参考价值的文章主要介绍了无人机自主探索FUEL:代码阅读3--执行循环顺序与部分释义。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、循环

  • 执行 fast_exploration_manager.cpp中的 FastExplorationManager::planExplore,进行探索并选择视点;
    此时终端打印max_id,min_id,代价cost mat以及旅行商算法参数 TSP
    — 相当于对应原文的第一部分,建立FIS,找到边界簇并不断更新信息,找到视点

  • 执行 fast_exploration_manager.cpp中的 FastExplorationManager::planMotion
    其中主要调用了两个函数 kinodynamicReplan , planExploreTrajplanYawExplore ,位于planner_manager.cpp
    其中当前视点与下一个视点距离不超过上下限时,调用 kinodynamicReplan 得到规划路径;超过上下限时,调用 planExploreTraj 得到规划路径。
    — 对应原文第二部分,根据视点进行规划得到最终轨迹

    int FastExplorationManager::planMotion(
            const Vector3d &cur_pos, const Vector3d &cur_vel, const Vector3d &cur_acc, const Eigen::Vector3d &cur_yaw,
            const Eigen::Vector3d &next_pos, const double next_yaw) {
        
        std::cout<< "&&&&&&&&&&&&&&&&&& planMotion &&&&&&&&&&&&&&&&&&&&"<<std::endl;

        double diff = fabs(next_yaw - cur_yaw[0]);                        //计算预期yaw角差距的绝对值
        double time_lb = min(diff, 2 * M_PI - diff) / ViewNode::yd_;          // 

        planner_manager_->astar_path_finder_->reset();
        if (planner_manager_->astar_path_finder_->search(cur_pos, next_pos) != Astar::REACH_END) {       //检查到下一个视点是否有障碍物
            ROS_ERROR("No path to next viewpoint");
            return FAIL;
        }
        auto path_to_next_goal = planner_manager_->astar_path_finder_->getPath();
        shortenPath(path_to_next_goal);

        const double radius_far = 5.0;            // 如果视点距离大于far,则只取 far的距离
        const double radius_close = 1.5;          //原1.5  如果视点距离小于close则不使用kino,直接使用两个视点的信息进行优化得到轨迹
        const double full_path_len = Astar::pathLength(path_to_next_goal);
        if (full_path_len < radius_close) {
            std::cout<< "------------ length of path < radius_close --------------"<<std::endl;
            // Next viewpoint is very close, no need to search kinodynamic path, just use waypoints-based optimization
            planner_manager_->planExploreTraj(path_to_next_goal, cur_vel, cur_acc, time_lb);
        } 
        else if (full_path_len > radius_far) {
            std::cout<< "------------ length of path > radius_far --------------"<<std::endl;
            // Next viewpoint is far away, select intermediate goal on geometric path (this also deal with dead end)
            double len2 = 0.0;
            vector<Eigen::Vector3d> truncated_path = {path_to_next_goal.front()};
            for (size_t i = 1; i < path_to_next_goal.size() && len2 < radius_far; ++i) {
                auto cur_pt = path_to_next_goal[i];
                len2 += (cur_pt - truncated_path.back()).norm();
                truncated_path.push_back(cur_pt);
            }
            planner_manager_->planExploreTraj(truncated_path, cur_vel, cur_acc, time_lb);     //在radius_far范围内规划轨迹
        } else {
            std::cout<< "------------ Search kino path to exactly next viewpoint --------------"<<std::endl;
            // Search kino path to exactly next viewpoint and optimize
            // cout << "\n\n\n\n\n\n\n\n0000000000000000000000000\n0000000000000000000000000\n\n\n\n\n\n";
            if (!planner_manager_->kinodynamicReplan(cur_pos, cur_vel, cur_acc, next_pos, Vector3d(0, 0, 0), time_lb))
                return FAIL;
        }

        // 以上不管使用planExploreTraj还是kinodynamicReplan,都仅使用p,v,a进行规划,没有规划yaw角

        if (planner_manager_->local_data_->pos_traj_.getTimeSum() < time_lb - 0.1)
            ROS_ERROR("Lower bound not satified!");

        LocalTrajDataPtr local_traj_data = planner_manager_->local_data_;
        local_traj_data->duration_ = local_traj_data->pos_traj_.getTimeSum();
        //单独对yaw角进行了规划
        planner_manager_->planYawExplore(cur_yaw, next_yaw, local_traj_data->pos_traj_,
                                         local_traj_data->duration_, ep_->relax_time_);

        local_traj_data->culcDerivatives();
        local_traj_data->start_time_ = ros::Time::now();
        local_traj_data->traj_id_ += 1;

        return SUCCEED;
    }

即三种情形下的规划分别为 :
1) if (full_path_len < radius_close)

planner_manager_->planExploreTraj(path_to_next_goal, cur_vel, cur_acc, time_lb);

2) else if (full_path_len > radius_far)

planner_manager_->planExploreTraj(truncated_path, cur_vel, cur_acc, time_lb); 

3)else:

if (!planner_manager_->kinodynamicReplan(cur_pos, cur_vel, cur_acc, next_pos, Vector3d(0, 0, 0), time_lb))
                return FAIL;
  • 终端输出结果:(自己加了一些其他输出打印)
&&&&&&&&&&&&&&&&&& planExplore 进行探索,选择视点 &&&&&&&&&&&&&&&&&&&&
[ WARN] [1690162858.128162765]: min_id 0.000000 0.000000 0.000000: 
[ WARN] [1690162858.128179720]: max_id 0.000000 0.000000 0.000000: 

[ WARN] [1690162858.170150992]: Cost mat: 0.035899, TSP: 0.001841
[Dijkstra Search] Node: 38, edge: 314
&&&&&&&&&&&&&&&&&& planMotion &&&&&&&&&&&&&&&&&&&&
=================  开始执行kino,获得kino起点终点信息==================
-- 在kino中调用A* search --
--------------KinodynamicAstar begin to search ----------------------
vel:-0.0602589, acc:-0.891468
near end
[non uniform B-spline] A size	120
============== B样条规划 yaw角  ===================
[planner manager] B-spline时间间隔: dt_yaw: 0.066089, start yaw:  -1.07579 0.0465283 0.0235393, end_yaw: -1.09138
[FSM]: from PLAN_TRAJ to EXEC_TRAJ
[FSM]: from EXEC_TRAJ to PLAN_TRAJ
[ WARN] [1690162858.479040533]: Replan: traj fully executed =======================================
&&&&&&&&&&&&&&&&&& planExplore 进行探索,选择视点 &&&&&&&&&&&&&&&&&&&&
[ WARN] [1690162858.489120813]: min_id 0.000000 0.000000 0.000000: 
[ WARN] [1690162858.489142242]: max_id 0.000000 0.000000 0.000000: 
[ WARN] [1690162858.492342561]: Frontier t: 0.003229

[ WARN] [1690162858.531257640]: Cost mat: 0.034793, TSP: 0.001260
[Dijkstra Search] Node: 36, edge: 276
&&&&&&&&&&&&&&&&&& planMotion &&&&&&&&&&&&&&&&&&&&
==============   B样条规划轨迹 (x,y,z)    ===============
[planner manager]  duration: 5.81806, seg_num: 8, dt: 0.727257
[non uniform B-spline] A size	143
============== B样条规划 yaw角  ===================
[planner manager] B-spline时间间隔: dt_yaw: 0.0753123, start yaw:  -1.06349 0.0148696 -0.117909, end_yaw: -1.03812
[FSM]: from PLAN_TRAJ to EXEC_TRAJ
[ INFO] [1690162858.906120884]: [FSM]: state: EXEC_TRAJ
[FSM]: from EXEC_TRAJ to PLAN_TRAJ
[ WARN] [1690162858.949439946]: Replan: traj fully executed =======================================

二、规划部分

1. FastPlannerManager::kinodynamicReplan (当前视点与下一个视点距离不超限)

    bool FastPlannerManager::kinodynamicReplan(const Eigen::Vector3d &start_pt,
                                               const Eigen::Vector3d &start_vel, const Eigen::Vector3d &start_acc,
                                               const Eigen::Vector3d &end_pt, const Eigen::Vector3d &end_vel,
                                               const double &time_lb) {
                                            
        std::cout<< "================= next viewpoint不超限,使用kino开始规划 =================="<<endl;
        std::cout << "[Kino replan]: start: start_pt = " << start_pt.transpose() << ", start_vel = " << start_vel.transpose()
                  << ", start_acc = " << start_acc.transpose() << endl;
        std::cout << "[Kino replan]:  goal: end_pt = " << end_pt.transpose() << ", end_vel = "
                  << end_vel.transpose() << endl;

        if ((start_pt - end_pt).norm() < 1e-2) {
            cout << "起点终点距离过近, Close goal" << endl;
            return false;
        }

        /******************************
         * Kinodynamic path searching *
         ******************************/
        vector<PathNodePtr> path;
        double shot_time;
        Matrix34 coef_shot;
        bool is_shot_succ;
        std::cout << "-- 在kino中调用A* search 验证--" << std::endl;
        //最多使用search规划两次
        int status = kino_path_finder_->search(start_pt, start_vel, start_acc, end_pt, end_vel,
                                               true, path, is_shot_succ, coef_shot, shot_time);
        if (status == KinodynamicAstar::NO_PATH) {
            ROS_ERROR("[Kino replan]: search the first time fail");
            status = kino_path_finder_->search(start_pt, start_vel, start_acc, end_pt, end_vel,
                                               false, path, is_shot_succ, coef_shot, shot_time);    // 由true改为false
            if (status == KinodynamicAstar::NO_PATH) {
                cout << "[Kino replan]: Can't find path. " << endl;
                return false;
            }
        }

其中函数search主要用于寻找路径,输入起点的p,v,a,终点p,v,布尔值init_search,路点path,布尔值is_shot_succ,矩阵coef_shot,时间shot_time;当第一次找不到轨迹时布尔值布尔值init_search置为false,会再次调用:

int status = kino_path_finder_->search(start_pt, start_vel, start_acc, end_pt, end_vel,
                                               true, path, is_shot_succ, coef_shot, shot_time);
ROS_ERROR("[Kino replan]: search the first time fail");
            status = kino_path_finder_->search(start_pt, start_vel, start_acc, end_pt, end_vel,
                                               false, path, is_shot_succ, coef_shot, shot_time);    // 由true改为false

对应函数位于kinodynamic_astar.cpp

int KinodynamicAstar::search(const Eigen::Vector3d &start_pt, const Eigen::Vector3d &start_v, const Eigen::Vector3d &start_a,
                                 const Eigen::Vector3d &end_pt, const Eigen::Vector3d &end_v,
                                 const bool init_search, vector<PathNodePtr> &path,
                                 bool &is_shot_succ, Matrix34 &coef_shot, double &shot_time) 
  • 布尔值init_search置为true或者false的主要影响:
    当为true时,tau的计算方法不一样
        if (init_search) {
            inputs.push_back(start_a);
            for (double tau = time_res_init * init_max_tau_; tau <= init_max_tau_ + 1e-3; tau += time_res_init * init_max_tau_)
                durations.push_back(tau);
        } 
        
        else {
            for (double ax = -max_acc_; ax <= max_acc_ + 1e-3; ax += max_acc_ * res)
                for (double ay = -max_acc_; ay <= max_acc_ + 1e-3; ay += max_acc_ * res)
                    for (double az = -max_acc_; az <= max_acc_ + 1e-3; az += max_acc_ * res) {
                        inputs.emplace_back(ax, ay, az);
                    }
            for (double tau = time_res * max_tau_; tau <= max_tau_; tau += time_res * max_tau_)
                durations.push_back(tau);
        }

添加两行输出辅助信息观察后:

if (init_search) {
            inputs.push_back(start_a);
            for (double tau = time_res_init * init_max_tau_; tau <= init_max_tau_ + 1e-3; tau += time_res_init * init_max_tau_){
                //-------------------   add     ---------------------
                std::cout<<"[search 1]: tau = "<< tau << std::endl;
                durations.push_back(tau);
            }
                
        } 
        else {
            for (double ax = -max_acc_; ax <= max_acc_ + 1e-3; ax += max_acc_ * res)
                for (double ay = -max_acc_; ay <= max_acc_ + 1e-3; ay += max_acc_ * res)
                    for (double az = -max_acc_; az <= max_acc_ + 1e-3; az += max_acc_ * res) {
                        inputs.emplace_back(ax, ay, az);
                    }
            for (double tau = time_res * max_tau_; tau <= max_tau_; tau += time_res * max_tau_){
                //-------------------   add     ---------------------
                std::cout<<"[search 2]: tau = "<< tau << std::endl;
                durations.push_back(tau);
            }
                
        }

终端信息:

================= next viewpoint不超限,使用kino开始规划 ==================
[Kino replan]: start: start_pt =  -1.47004 -0.750328   1.03817, start_vel = -0.213102 -0.490083 -0.168459, start_acc =  0.347463 -0.191323  0.178028
[Kino replan]:  goal: end_pt = -2.30097  2.81245  1.29608, end_vel = 0 0 0
-- 在kino中调用A* search 验证--
--------------KinodynamicAstar begin to search ----------------------
[search 1]: tau = 0.05
[search 1]: tau = 0.1
[search 1]: tau = 0.15
[search 1]: tau = 0.2
[search 1]: tau = 0.25
[search 1]: tau = 0.3
[search 1]: tau = 0.35
[search 1]: tau = 0.4
[search 1]: tau = 0.45
[search 1]: tau = 0.5
[search 1]: tau = 0.55
[search 1]: tau = 0.6
[search 1]: tau = 0.65
[search 1]: tau = 0.7
[search 1]: tau = 0.75
[search 1]: tau = 0.8
[search 1]: tau = 0.85
[search 1]: tau = 0.9
[search 1]: tau = 0.95
[search 1]: tau = 1
open set empty, no path!
use node num: 351
iter num: 28

最后对路径进行B样条优化:

     /*********************************
         * Parameterize path to B-spline *
         *********************************/
        double ts = pp_.ctrl_pt_dist / pp_.max_vel_;
        vector<Eigen::Vector3d> point_set, start_end_derivatives;
        KinodynamicAstar::getSamples(path, start_vel, end_vel, is_shot_succ, coef_shot, shot_time, ts, point_set, start_end_derivatives);
        Eigen::MatrixXd ctrl_pts;
        NonUniformBspline::parameterizeToBspline(
                ts, point_set, start_end_derivatives, pp_.bspline_degree_, ctrl_pts);
        NonUniformBspline init_bspline(ctrl_pts, pp_.bspline_degree_, ts);

        /*********************************
         * B-spline-based optimization   *
         *********************************/
        int cost_function = BsplineOptimizer::NORMAL_PHASE;
        if (pp_.min_time_) cost_function |= BsplineOptimizer::MINTIME;
        vector<Eigen::Vector3d> start, end;
        init_bspline.getBoundaryStates(2, 0, start, end);
        pos_traj_bspline_optimizer->setBoundaryStates(start, end);
        if (time_lb > 0) pos_traj_bspline_optimizer->setTimeLowerBound(time_lb);
        pos_traj_bspline_optimizer->optimize(ctrl_pts, ts, cost_function, 1, 1);
        local_data_->pos_traj_.setUniformBspline(ctrl_pts, pp_.bspline_degree_, ts);

2. FastPlannerManager::planExploreTraj (当前视点与下一个视点距离超限)

(1) 获得路点信息

if (tour.empty()) ROS_ERROR("Empty path to traj planner");

        // Generate traj through waypoints-based method
        const size_t pt_num = tour.size();
        //-----------------------------------------
        std::cout<<"路点数量 = "<<pt_num<<std::endl;

        Eigen::MatrixXd pos(pt_num, 3);
        for (Eigen::Index i = 0; i < pt_num; ++i) pos.row(i) = tour[i];

        Eigen::Vector3d zero(0, 0, 0);
        Eigen::VectorXd times(pt_num - 1);

(2)计算分配时间

// 时间使用路点位置信息与最大速度进行计算
        for (Eigen::Index i = 0; i < pt_num - 1; ++i)
            times(i) = (pos.row(i + 1) - pos.row(i)).norm() / (pp_.max_vel_ * 0.5);

(3)由path计算轨迹traj

  PolynomialTraj init_traj;
        PolynomialTraj::waypointsTraj(pos, cur_vel, zero, cur_acc, zero, times, init_traj);

(4)B样条优化

// B-spline-based optimization
        vector<Vector3d> points, boundary_deri;
        double duration = init_traj.getTotalTime();
        int seg_num = init_traj.getLength() / pp_.ctrl_pt_dist;
        seg_num = max(8, seg_num);                       // 最多分成8段?
        double dt = duration / double(seg_num);

3. FastPlannerManager::planYawExplore (yaw角规划)

特殊:对yaw角进行了单独的规划

(1)规划信息

const int seg_num = 12;              
        double dt_yaw = duration / seg_num;  // time of B-spline segment
        Eigen::Vector3d start_yaw3d = start_yaw;
        std::cout << "[planner manager] B-spline时间间隔: dt_yaw: " << dt_yaw << ", start yaw: " << start_yaw3d.transpose()
                  << ", end_yaw: " << end_yaw << std::endl;

其中特别的是 固定了yaw角规划的分段信息,固定为了12段,而planExploreTraj中轨迹最多分为8段

(2)控制yaw角方向

  while (start_yaw3d[0] < -M_PI) start_yaw3d[0] += 2 * M_PI;
        while (start_yaw3d[0] > M_PI) start_yaw3d[0] -= 2 * M_PI;
        double last_yaw = start_yaw3d[0];

(3)生成yaw角控制点

 // Yaw traj control points
        Eigen::MatrixXd yaw(seg_num + 3, 1);
        yaw.setZero();

(4)起点终点状态

// Initial state
        Eigen::Matrix3d states2pts;
        states2pts << 1.0, -dt_yaw, (1 / 3.0) * dt_yaw * dt_yaw,
                1.0, 0.0, -(1 / 6.0) * dt_yaw * dt_yaw,
                1.0, dt_yaw, (1 / 3.0) * dt_yaw * dt_yaw;
        yaw.block<3, 1>(0, 0) = states2pts * start_yaw3d;
     // Final state
        Eigen::Vector3d end_yaw3d(end_yaw, 0, 0);
        roundYaw(last_yaw, end_yaw3d(0));
        yaw.block<3, 1>(seg_num, 0) = states2pts * end_yaw3d;

(5)加入路点约束,确认前方是否可行

// Add waypoint constraints if looking forward is enabled
        vector<Eigen::Vector3d> waypts;
        vector<int> waypt_idx;
        const double forward_t = 2.0;
        const int relax_num = relax_time / dt_yaw;               //relax_time = 1.0
        for (int i = 1; i < seg_num - relax_num; ++i) {
            double tc = i * dt_yaw;
            Eigen::Vector3d pc = pos_traj.evaluateDeBoorT(tc);
            double tf = min(duration, tc + forward_t);
            Eigen::Vector3d pf = pos_traj.evaluateDeBoorT(tf);
            Eigen::Vector3d pd = pf - pc;
            Eigen::Vector3d waypt;
            if (pd.norm() > 1e-3) {
                waypt(0) = atan2(pd(1), pd(0));
                waypt(1) = waypt(2) = 0.0;
                roundYaw(last_yaw, waypt(0));
            } else
                waypt = waypts.back();

            last_yaw = waypt(0);
            waypts.push_back(waypt);
            waypt_idx.push_back(i);
        }

(6)yaw角角度规划是否变化太大

  // Debug rapid change of yaw
        if (fabs(start_yaw3d[0] - end_yaw3d[0]) >= M_PI) {
            ROS_ERROR("Yaw change rapidly!");
            // std::cout << "start yaw: " << start_yaw3d[0] << ", " << end_yaw3d[0] << std::endl;
            std::cout << "yaw变化过大!! change of yaw = " << fabs(start_yaw3d[0] - end_yaw3d[0]) <<std::endl;
        }

当超过M_PI时显示ROS_ERROR

(7) yaw角使用B样条优化

       // Call B-spline optimization solver
        int cost_func = BsplineOptimizer::SMOOTHNESS | BsplineOptimizer::START |
                        BsplineOptimizer::END | BsplineOptimizer::WAYPOINTS;
        vector<Eigen::Vector3d> start = {Eigen::Vector3d(start_yaw3d[0], 0, 0),
                                         Eigen::Vector3d(start_yaw3d[1], 0, 0), Eigen::Vector3d(start_yaw3d[2], 0, 0)};
        vector<Eigen::Vector3d> end = {Eigen::Vector3d(end_yaw3d[0], 0, 0), Eigen::Vector3d(0, 0, 0)};
        yaw_traj_bspline_optimizer->setBoundaryStates(start, end);
        yaw_traj_bspline_optimizer->setWaypoints(waypts, waypt_idx);
        yaw_traj_bspline_optimizer->optimize(yaw, dt_yaw, cost_func, 1, 1);

(8)将yaw的信息更新至轨迹信息文章来源地址https://www.toymoban.com/news/detail-630302.html

   // Update traj info
        local_data_->yaw_traj_.setUniformBspline(yaw, 3, dt_yaw);

到了这里,关于无人机自主探索FUEL:代码阅读3--执行循环顺序与部分释义的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 6_树莓派机载计算机通过串口指令控制无人机自主飞行教程

    飞行器赛题至出现以来。从大体趋势上来看参赛学生的主流飞控路线主要经历了以下四个发展阶段: APM/Pixhawk开源飞控作为 飞控板 直接控制无人机飞行,赞助商MCU作为 导航板 处理部分视觉数据、测距数据后,单片机模拟出遥控信号给控制板间接控制无人机 赞助商MCU作为唯

    2024年02月13日
    浏览(47)
  • PX4|基于FAST-LIO mid360的无人机室内自主定位及定点悬停

    在配置mid360运行环境后,可使用mid360进行室内的精准定位。 在livox_ros_driver2的上级目录src下保存fast-lio的工程 为使用mid360作为硬件输入修改源代码中的所有 livox_ros_driver 为 livox_ros_driver2 (包括.cpp .h 以及 package.xml) 在 livox_ros_driver2 的pkg中编译 编译过程大概需要3g的内存,若

    2024年04月08日
    浏览(46)
  • Python 探索 Tello 无人机的奇妙世界

    如果您希望使用 Tello 无人机拍摄照片并将其传输到您的 PC,那么您走运了! 只需几行 Python 代码,您就可以轻松控制您的 Tello 拍照,然后将 JPEG 图片传输到您的计算机。 首先,确保在 Python 环境中安装了必要的包。 你需要 djitellopy 包来与你的 Tello 通信,需要 opencv-python 包来

    2024年02月14日
    浏览(55)
  • 论文分享 | 面向大型三维环境的无人机多地图协同探索

    阿木实验室推出的开源项目校园赞助活动,再次迎来开发者参与! 苏州大学李子强 同学,在Prometheus开源仿真架构的基础上进行了二次开发且发表了相关论文。其论文 《面向大型三维环境的无人机多地图协同探索》 收录于IEEE机器人与仿生国际会议,根据活动规则,将获得阿

    2024年03月17日
    浏览(45)
  • 《基于改进YOLOv5的无人机图像检测算法》论文阅读

    原文链接:UAV Recognition and Tracking Method Based on YOLOv5 | IEEE Conference Publication | IEEE Xplore 《基于改进YOLOv5的无人机图像检测算法》论文阅读        基于深度学习的目标检测算法通常对传统目标检测效果较好,但对小目标的检测精度较低。针对该问题,该文通过对无人机采集图像

    2024年02月14日
    浏览(51)
  • 『论文阅读|利用深度学习在热图像中实现无人机目标检测』

    论文题目: Object Detection in Thermal Images Using Deep Learning for Unmanned Aerial Vehicles 利用深度学习在热图像中实现无人机目标检测 这项研究提出了一种神经网络模型,能够识别无人驾驶飞行器采集的热图像中的微小物体。模型由三部分组成:骨干、颈部和预测头。骨干基于 YOLOv5 的结

    2024年02月20日
    浏览(40)
  • 【论文阅读】基于鲁棒强化学习的无人机能量采集可重构智能表面

    只做学习记录,侵删原文链接 @article{peng2023energy, title={Energy Harvesting Reconfigurable Intelligent Surface for UAV Based on Robust Deep Reinforcement Learning}, author={Peng, Haoran and Wang, Li-Chun}, journal={IEEE Transactions on Wireless Communications}, year={2023}, publisher={IEEE} } 研究目标 RIS每一个反射单元都由无源器件

    2024年02月05日
    浏览(51)
  • 【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 ​ 随着

    2023年04月22日
    浏览(93)
  • 【无人机】基于 ode45实现四旋翼无人机姿态仿真附Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年02月03日
    浏览(105)
  • 【无人机控制】基于模型预测控制MPC无人机实现轨迹跟踪附Matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年04月28日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包