【神经网络手写数字识别-最全源码(pytorch)】

这篇具有很好参考价值的文章主要介绍了【神经网络手写数字识别-最全源码(pytorch)】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Torch安装的方法

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能

学习方法

  • 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程
  • 2.直接就上案例就行,先来跑,遇到什么来解决什么

Mnist分类任务:

  • 网络基本构建与训练方法,常用函数解析

  • torch.nn.functional模块

  • nn.Module模块

读取Mnist数据集

  • 会自动进行下载
# 查看自己的torch的版本
import torch
print(torch.__version__)
%matplotlib inline
# 前两步,不用管是在网上下载数据,后续的我们都是在本地的数据进行操作
from pathlib import Path
import requests

DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"

PATH.mkdir(parents=True, exist_ok=True)

URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"

if not (PATH / FILENAME).exists():
        content = requests.get(URL + FILENAME).content
        (PATH / FILENAME).open("wb").write(content)
import pickle
import gzip

with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
        ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

784是mnist数据集每个样本的像素点个数

from matplotlib import pyplot
import numpy as np

pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能
全连接神经网络的结构
【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能注意数据需转换成tensor才能参与后续建模训练

import torch

x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())

torch.nn.functional 很多层和函数在这里都会见到

torch.nn.functional中有很多功能,后续会常用的。那什么时候使用nn.Module,什么时候使用nn.functional呢?一般情况下,如果模型有可学习的参数,最好用nn.Module,其他情况nn.functional相对更简单一些

import torch.nn.functional as F

loss_func = F.cross_entropy

def model(xb):
    return xb.mm(weights) + bias
bs = 64
xb = x_train[0:bs]  # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
bias = torch.zeros(10, requires_grad=True)

print(loss_func(model(xb), yb))

创建一个model来更简化代码

  • 必须继承nn.Module且在其构造函数中需调用nn.Module的构造函数
  • 无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
  • Module中的可学习参数可以通过named_parameters()或者parameters()返回迭代器
from torch import nn

class Mnist_NN(nn.Module):
    # 构造函数
    def __init__(self):
        super().__init__()
        self.hidden1 = nn.Linear(784, 128)
        self.hidden2 = nn.Linear(128, 256)
        self.out  = nn.Linear(256, 10)
        self.dropout = nn.Dropout(0.5)
    #前向传播自己定义,反向传播是自动进行的
    def forward(self, x):
        x = F.relu(self.hidden1(x))
        x = self.dropout(x)
        x = F.relu(self.hidden2(x))
        x = self.dropout(x)
        #x = F.relu(self.hidden3(x))
        x = self.out(x)
        return x
        

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能

net = Mnist_NN()
print(net)

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能
可以打印我们定义好名字里的权重和偏置项

for name,parameter in net.named_parameters():
    print(name, parameter,parameter.size())

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能

使用TensorDataset和DataLoader来简化

from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader

train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)

valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),
        DataLoader(valid_ds, batch_size=bs * 2),
    )
  • 一般在训练模型时加上model.train(),这样会正常使用Batch Normalization和 Dropout
  • 测试的时候一般选择model.eval(),这样就不会使用Batch Normalization和 Dropout
import numpy as np

def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):
        model.train()  # 训练的时候需要更新权重参数
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)

        model.eval() # 验证的时候不需要更新权重参数
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))

zip的用法

a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)
print(list(zipped))
a2,b2 = zip(*zip(a,b))
print(a2)
print(b2)
from torch import optim
def get_model():
    model = Mnist_NN()
    return model, optim.SGD(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)

    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()

    return loss.item(), len(xb)

三行搞定!

train_dl,valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(100, model, loss_func, opt, train_dl, valid_dl)

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能

correct = 0
total = 0
for xb,yb in valid_dl:
    outputs = model(xb)
    _,predicted = torch.max(outputs.data,1)
    total += yb.size(0)
    correct += (predicted == yb).sum().item()
print(f"Accuracy of the network the 10000 test imgaes {100*correct/total}")

【神经网络手写数字识别-最全源码(pytorch)】,# 深度学习得核心框架pytorch,神经网络,pytorch,人工智能

后期有兴趣的小伙伴们可以比较SGD和Adam两种优化器,哪个效果更好一点

-SGD 20epoch 85%
-Adam 20epoch 85%文章来源地址https://www.toymoban.com/news/detail-630303.html

到了这里,关于【神经网络手写数字识别-最全源码(pytorch)】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 用C语言构建一个手写数字识别神经网络

    (原理和程序基本框架请参见前一篇 \\\"用C语言构建了一个简单的神经网路\\\") 1.准备训练和测试数据集 从http://yann.lecun.com/exdb/mnist/下载手写数字训练数据集, 包括图像数据train-images-idx3-ubyte.gz 和标签数据 train-labels-idx1-ubyte.gz. 分别将他们解压后放在本地文件夹中,解压后文件名

    2024年02月14日
    浏览(28)
  • pytorch集智-5手写数字识别器-卷积神经网络

    简称:CNN,convolutional neural network 应用场景:图像识别与分类(CNN),看图说话(CNN+RNN)等 优越性:和多层感知机相比,cnn可以识别独特的模式,可以自动从数据中提取特征。一般机器学习需要特征工程,cnn可以自动识别,极大代替或取代了特征工程 和多层感知机原理不同

    2024年01月19日
    浏览(33)
  • CNN卷积神经网络实现手写数字识别(基于tensorflow)

    卷积网络的 核心思想 是将: 局部感受野 权值共享(或者权值复制) 时间或空间亚采样 卷积神经网络 (Convolutional Neural Networks,简称: CNN )是深度学习当中一个非常重要的神经网络结构。它主要用于用在 图像图片处理 , 视频处理 , 音频处理 以及 自然语言处理 等等。

    2024年02月11日
    浏览(31)
  • PyTorch训练简单的全连接神经网络:手写数字识别

    数据集:MNIST 该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片 神经网络:全连接网络 【1】https://www.youtube.com/watch?v=Jy4wM2X21u0list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vzindex=3

    2024年02月16日
    浏览(24)
  • 卷积神经网络(CNN)入门:使用Python实现手写数字识别

    在上一篇文章中,我们介绍了如何使用Python实现一个简单的前馈神经网络。本文将重点介绍卷积神经网络(CNN),这是一种在计算机视觉任务中表现优异的深度学习模型。我们将从卷积神经网络的基本原理开始,介绍卷积层、池化层和全连接层等概念,然后使用Python和Keras库

    2023年04月15日
    浏览(38)
  • (神经网络)MNIST手写体数字识别MATLAB完整代码

            在此次实验中,笔者针对 MNIST 数据集,利用卷积神经网络进行训练与测试,提 出了一系列的改进方法,并对这些改进的方法进行了逐一验证,比较了改进方法与浅层 神经网络的优劣。         首先,笔者对实验中所用的 MNIST 数据集进行了简单的介绍;接着,

    2024年02月03日
    浏览(34)
  • 深度学习:使用卷积神经网络CNN实现MNIST手写数字识别

    本项目基于pytorch构建了一个深度学习神经网络,网络包含卷积层、池化层、全连接层,通过此网络实现对MINST数据集手写数字的识别,通过本项目代码,从原理上理解手写数字识别的全过程,包括反向传播,梯度下降等。 卷积神经网络是一种多层、前馈型神经网络。从功能上

    2024年02月13日
    浏览(33)
  • 基于python的Keras库构建的深度神经网络手写数字识别模型

    目录 模型训练过程 ①导入所需的库 ②加载手写体数据集,将数据集分为训练集和测试集 ③数据预处理 ④构建模型 ⑤编译模型 ⑥训练模型 ⑦使用测试集进行验证 ⑧输出模型准确率和时间消耗 完整代码如下: 模型训练过程 使用到的数据集为IMDB电影评论情感分类数据集,该

    2024年02月09日
    浏览(30)
  • 入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

    1.1 问题导入 如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输出层。根据下图给出的网络结构搭建本案例用到的全连接神经网络 1.2 手写字数据集MINST 如图所示,MNIST数据集是机器学习领域中非常经典的一个数据集,由6

    2024年02月03日
    浏览(36)
  • (九)人工智能应用--深度学习原理与实战--前馈神经网络实现MNST手写数字识别

    目标: 识别手写体的数字,如图所示: 学习内容: 1、掌握MNIST数据集的加载和查看方法 2、熟练掌握Keras建立前馈神经网络的步骤【重点】 3、掌握模型的编译及拟合方法的使用,理解参数含义【重点】 4、掌握模型的评估方法 5、掌握模型的预测方法 6、掌握自定义图片的处理与

    2024年02月13日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包