pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

这篇具有很好参考价值的文章主要介绍了pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.迁移学习概念

2.数据预处理

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

3.2如果用GPU训练,需要加入以下代码

3.3卷积层冻结模块

3.4加载resnet152模

3.5解释initialize_model函数

3.6迁移学习网络搭建

3.7优化器

3.8训练模块(可以理解为主函数)

3.9开始训练

3.10微调

4.测试模型

4.1加载训练好的模型

4.2测试数据预处理

4.3数据展示

4.4提取测试数据集

4.5计算提取数据集的预测结果

4.6展示预测结果

参考文献


1.迁移学习概念

先说一下深度学习常见的问题

        1.数据集不够,通常用数据增强解决。

        2.参数难以确定,训练时间长,这就需要用迁移学习来解决

什么叫迁移学习呢:比方说有一个对100w的自行车数据集,并用VGG模型训练好的网络,而此时你想训练一个1w自行车数据集(虽然对象一样,但采集的数据会不同),也用VGG模型进行训练,你发现,你们数据集的对象一样,选用的网络模型一样,此时在初始化自己模型权重(就是卷积层,池化层和全连接层的参数)时,可以用人家训练好的模型参数(如果不这样就需要随机初始化模型权重),这样做可以节省大量寻找最优参数的时间,又可以保证参数的准确。

总结:迁移学习就是用别人的东西训练自己的东西,但要注意,为了使用别人的模型参数,要保证自己的数据对象、网络结构、输入和输出数据的结构和别人相同。比方说,别人识别狗,你不能识别 猫,别人用VGG你不能用resnet,别人输入和输入图像大小是224×224.你不能是256×256。

进一步理解迁移学习的使用1:看下图最大的红框,表示卷积层,当用别人的模型时,对卷积层的两种处理方式。

        A:作为自己模型权重的初始化参数。

        B:冻结卷积层网络,意思是直接用别人的参数,不再更新。冻结卷积层网络又分几种情况。

                B1:当数据量小时,冻结第二大红框表示的卷积层,剩下卷积层进行更新。因为数据量小时,容易过拟合,直接用别人呢参数最好。

                B2:当数据量中等时冻结最小红框表示的卷积层,剩下的卷积层进行更行。

                B3:当数据量足够大时,不冻结卷积层,用A的方法,只作为自己模型权重的初始化参数。数据量大时,虽然对象一样,但毕竟数据不同,会有一定差异,更新参数是最优选择。

 进一步理解迁移学习的使用2:说完卷积层,在说一下全连接层,必须要注意不管卷积层选A还是B,全连接层都是要更新的,原因在于,别人模型进行图像分类可能是进行1000个分类,而你只进行100或者999个分类,那么全连接层的参数肯定是不同的。

pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码)),迁移学习,人工智能,机器学习

2.数据预处理

上接该文:pytorch实战-图像分类(一)(数据预处理)

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True 

3.2如果用GPU训练,需要加入以下代码

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.3卷积层冻结模块

def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False

3.4加载resnet152模

注意:resnet152模型就是别人的模型。

model_ft = models.resnet152()
model_ft

3.5解释initialize_model函数

本小节只是截取pytorch官网的一个例子,用initialize_model说明在pytoch中迁移学习怎么使用,不属于本文代码

具体操作如下

        1.下载别人的模型参数,这里下载restnet152模型

        2.选择需要冻结的卷积层

        3.改变全连接层的输出个数,这里将1000改为102

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0

    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained) #下载resnet152模型
        set_parameter_requires_grad(model_ft, feature_extract) #选择冻结哪部分卷积层
        num_ftrs = model_ft.fc.in_features #全连接层的输入比方说全连接层是2048×1000,这就是2048.
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                   nn.LogSoftmax(dim=1)) #原resnet152的全连接层输出是1000,自己模型需要的输出是102,进行改动。
        input_size = 224
    return model_ft, input_size

3.6迁移学习网络搭建

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

#GPU计算
model_ft = model_ft.to(device)

# 模型保存
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

3.7优化器

就是用该方法更新模型参数

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

3.8训练模块(可以理解为主函数)

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
    since = time.time() #
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)

    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]

    best_model_wts = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)

                    _, preds = torch.max(outputs, 1)

                    # 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

3.9开始训练

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

3.10微调

在2.9中得到的模型,是冻结了卷积层,只训练了全连接层,所以此时希望在此基础上再对卷积层进行训练。

for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.NLLLoss()

# Load the checkpoint,加载自己的模型

checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

4.测试模型

4.1加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU模式
model_ft = model_ft.to(device)

# 保存文件的名字
filename='seriouscheckpoint.pth'

# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

4.2测试数据预处理

        1.测试数据处理方法需要跟训练时一直才可以

        2.crop操作的目的是保证输入的大小是一致的

        3.标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化

        4.PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换

def process_image(image_path):
    # 读取测试数据
    img = Image.open(image_path)
    # Resize,thumbnail方法只能进行缩小,所以进行了判断
    if img.size[0] > img.size[1]:
        img.thumbnail((10000, 256))
    else:
        img.thumbnail((256, 10000))
    # Crop操作
    left_margin = (img.width-224)/2
    bottom_margin = (img.height-224)/2
    right_margin = left_margin + 224
    top_margin = bottom_margin + 224
    img = img.crop((left_margin, bottom_margin, right_margin,   
                      top_margin))
    # 相同的预处理方法
    img = np.array(img)/255
    mean = np.array([0.485, 0.456, 0.406]) #provided mean
    std = np.array([0.229, 0.224, 0.225]) #provided std
    img = (img - mean)/std
    
    # 注意颜色通道应该放在第一个位置
    img = img.transpose((2, 0, 1))
    
    return img

4.3数据展示

def imshow(image, ax=None, title=None):
    """展示数据"""
    if ax is None:
        fig, ax = plt.subplots()
    
    # 颜色通道还原
    image = np.array(image).transpose((1, 2, 0))
    
    # 预处理还原
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = std * image + mean
    image = np.clip(image, 0, 1)
    
    ax.imshow(image)
    ax.set_title(title)
    
    return ax

4.4提取测试数据集

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)

4.5计算提取数据集的预测结果

_, preds_tensor = torch.max(output, 1)

preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

4.6展示预测结果

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

参考文献

1.6-训练结果与模型保存_哔哩哔哩_bilibili文章来源地址https://www.toymoban.com/news/detail-630700.html

到了这里,关于pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于传统网络架构训练图像分类模型(上传到colab中进行运算)

    部署colab参考网站 相关文件:提取码:o2gn 在google drive中部署以上涉及的相关文件夹 这个项目主要是对5类花的图像进行分类 采用迁移学习的方法,迁移学习resnet网络,利用原来的权重作为预训练数据,只训练最后的全连接层的权重参数 ###说明读取的凸显的像素值是在0~255之

    2024年02月16日
    浏览(37)
  • 零基础手把手训练实践-图像分类模型-基于达摩院modelscope

    -基于达摩院modelscope 导读:图像分类模型是最简单的,也是最基础的计算机视觉任务,应用非常广泛。本文将手把手介绍零基础训练图像分类模型的实践过程。文章主要介绍如何在标注好的数据集基础上,进行微调,使模型能够在新的数据上重新适配一个新的分类任务。 阅读

    2024年02月13日
    浏览(34)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(47)
  • Python基于PyTorch实现循环神经网络分类模型(LSTM分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍

    2024年02月16日
    浏览(48)
  • 人工智能在教育上的应用1-基于pytorch框架下模型训练,用于数学题目图形的智能分类

    大家好,今天给大家介绍一下人工智能在教育上的应用1-基于pytorch框架下模型训练,用于数学题目图形的智能分类,本文将利用CNN算法对数学题目中的图形进行自动分类和识别。这种应用可以帮助学生更好地理解和解决与数学相关的问题。基于CNN的数学题目图形智能分类功能

    2024年02月16日
    浏览(44)
  • 深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

    大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。

    2024年02月14日
    浏览(45)
  • 【NLP】一个使用PyTorch实现图像分类的迁移学习实例

    在特征提取中,可以在预先训练好的网络结构后修改或添加一个简单的分类器,然后将源任务上预先训练好的网络作为另一个目标任务的特征提取器,只对最后增加的分类器参数重新学习,而预先训练好的网络参数不被修改或冻结。 在完成新任务的特征提取时使用的是源任务

    2024年02月14日
    浏览(40)
  • pytorch11:模型加载与保存、finetune迁移训练

    往期回顾 pytorch01:概念、张量操作、线性回归与逻辑回归 pytorch02:数据读取DataLoader与Dataset、数据预处理transform pytorch03:transforms常见数据增强操作 pytorch04:网络模型创建 pytorch05:卷积、池化、激活 pytorch06:权重初始化 pytorch07:损失函数与优化器 pytorch08:学习率调整策略

    2024年02月01日
    浏览(47)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(60)
  • 【pytorch】Vision Transformer实现图像分类+可视化+训练数据保存

    Transformer的核心是 “自注意力” 机制。 论文地址:https://arxiv.org/pdf/2010.11929.pdf 自注意力(self-attention) 相比 卷积神经网络 和 循环神经网络 同时具有并行计算和最短的最大路径⻓度这两个优势。因此,使用自注意力来设计深度架构是很有吸引力的。对比之前仍然依赖循环神

    2023年04月08日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包