【报错】RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasLtMatmul( ltHandle,

这篇具有很好参考价值的文章主要介绍了【报错】RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasLtMatmul( ltHandle,。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在GPU上运行hugging face transformer的时候出现如下报错:

RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasLtMatmul( ltHandle, computeDesc.descriptor(), &alpha_val, mat1_ptr, Adesc.descriptor(), mat2_ptr, Bdesc.descriptor(), &beta_val, result_ptr, Cdesc.descriptor(), result_ptr, Cdesc.descriptor(), &heuristicResult.algo, workspace.data_ptr(), workspaceSize, at::cuda::getCurrentCUDAStream())`

切换至cpu之后,报错:

-> 1724     return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
   1725 
   1726 

IndexError: index out of range in self

根据cpu上的报错内容,判断为模型输入太长,超过了模型的embedding最大尺寸,可以在tokenizer设置max_len来进行截断(truncation)。

batch = tokenizer([input_text],truncation=True,padding='longest',
max_length=max_length, return_tensors="pt").to(torch_device)

由于GPU上的报错一般都比较抽象,建议先在cpu上debug。有可能你的GPU报错和我的一样,但是cpu报错不同,也就是实际导致错误的原因是不一样的。


参考:
IndexError: index out of range in self #5611文章来源地址https://www.toymoban.com/news/detail-631500.html

到了这里,关于【报错】RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasLtMatmul( ltHandle,的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • BUG:RuntimeError: CUDA error: invalid device ordinal CUDA kernel errors might be asynchronously repo

    参考链接 当运行以下代码出现报错: 报错信息如下 RuntimeError: CUDA error: invalid device ordinal CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. 报错完整截图 报错的信息告诉我们,编号\\\"1\\\"是无效的设

    2024年02月12日
    浏览(50)
  • 已解决RuntimeError: CUDA error: invalid device ordinal CUDA kernel errors might be asynchronously repo

    参考链接 当运行以下代码出现报错: 报错信息如下 RuntimeError: CUDA error: invalid device ordinal CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. 报错完整截图 报错的信息告诉我们,编号\\\"1\\\"是无效的设

    2024年02月04日
    浏览(47)
  • 解决:RuntimeError: CUDA error: device-side assert triggered

    @[TOC]解决办法:RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at

    2024年02月12日
    浏览(35)
  • RuntimeError: CUDA error: an illegal memory access was encountered

    后续发现其实是某张卡有问题, 0~3一共4个GPU,只在使用0号GPU的时候会出问题 0号卡似乎是被某个进程锁了,还是怎么样,不用那个卡就没事了 其实不难发现,我报错的位置基本都是从 gpu 往 cpu 转换的时候出现的问题。 因此考虑是不是cpu内存不太够了,所以内存访问发生错

    2024年01月17日
    浏览(54)
  • 报错解决:RuntimeError: CUDA out of memory.

    在进行深度学习的模型训练时,经常会遇到显存溢出的报错: RuntimeError: CUDA out of memory. 输出如下图所示: 打开一个终端,输入以下命令查看GPU使用情况: 输出如下图所示: 使用nvidia-htop可以进一步查看更为详细的内容。 nvidia-htop:A tool for enriching the output of nvidia-smi. 可以通

    2024年02月12日
    浏览(56)
  • Bug小能手系列(python)_13: RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might

    在运行 Python 代码时出现报错: RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. 注意:报错对应的代码部分与实际出现错误的部分是不同的。具体报错

    2024年02月04日
    浏览(38)
  • 【RuntimeError: CUDA error: device-side assert triggered】问题与解决

    当我在调试模型的时候,出现了如下的问题 /opt/conda/conda-bld/pytorch_1656352465323/work/aten/src/ATen/native/cuda/IndexKernel.cu:91: operator(): block: [5,0,0], thread: [63,0,0] Assertion `index = -sizes[i] index sizes[i] “index out of bounds”` failed. 通过提示信息可以知道是个数组越界的问题。但是如图一中第二行

    2024年01月21日
    浏览(38)
  • 出现错误(已解决)RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA ker

    为什么把警告po出来,是因为警告可以让我们了解一些有用信息。 首先警告里的内容不可忽略,翻译过来就是NVIDIA RTX GeForce 3060Ti(我使用的服务器)支持的CUDA的算力为8.6,与当前的pytorch的版本不匹配。说白了就是CUDA和pytorch版本不一致。 当前的pytorch版本支持的CUDA的算力为

    2024年02月10日
    浏览(50)
  • 已解决RuntimeError: CUDA error: device-side assert triggered异常的正确解决方法,亲测有效!!!

    已解决RuntimeError: CUDA error: device-side assert triggered异常的正确解决方法,亲测有效!!! RuntimeError: CUDA error: device-side assert triggered 出现 CUDA error: device-side assert triggered 错误通常是由于 GPU 上的某些计算出现了问题,导致 CUDA 运行时库触发了设备端断言。 下滑查看解决方法 要解

    2024年02月07日
    浏览(41)
  • RuntimeError: CUDA error: no kernel image is available for execution on the device

    导致的原因一般都是显卡算力和cuda或者torch版本不匹配 比如在conda中安装的pytorch=1.5.0 cuda=10.2 错误:RuntimeError: CUDA error: no kernel image is available for execution on the device 参考pytorch 报错 RuntimeError: CUDA error: no kernel image is available for execution on the device_可豌豆的博客-CSDN博客 则应该安装

    2024年02月15日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包