解释器模式(Interpreter)

这篇具有很好参考价值的文章主要介绍了解释器模式(Interpreter)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

解释器模式是一种行为设计模式,可以解释语言的语法或表达式。给定一个语言,定义它的文法的一种表示,然后定义一个解释器,使用该文法来解释语言中的句子。解释器模式提供了评估语言的语法或表达式的方式。

Interpreter is a behavior design pattern. It can interpret the syntax or expressions of a language. 
Given a language, define a representation of its grammar, and then define an interpreter 
that uses the grammar to interpret sentences by the language.

结构设计

解释器模式包含如下角色:
Context,上下文,包含解释器之外的一些全局信息。
AbstractExpression,抽象表达式,声明一个抽象的解释操作,这个接口为抽象语法树中所有的节点所共享。
TerminalExression,终结符表达式,实现与文法中的终结符相关联的解释操作。
NonterminalExpression,非终结符表达式,实现与文法中的非终结符相关联的解释操作,对文法中每一条规则R1、R2、…、Rn 都需要一个具体的非终结符表达式类。
Client,客户端,构建一个句子,它是TerminalExression和NonterminalExpression的实例的一个抽象语法树,然后初始化Context,并调用解释操作。
解释器模式类图表示如下:
解释器模式(Interpreter),设计模式,解释器模式,java

伪代码实现

接下来将使用代码介绍下解释器模式的实现。由于无法使用抽象的用例表示出解释器模式,所以这里会基于特定的场景给出代码示例。这里以常见的四则运算(由于除法需要特殊处理,这里暂不提供)的解析为例,
介绍下解释器模式的实现。

// 1、抽象表达式,声明一个抽象的解释操作接口
public interface Expression {
    int interpret();
}

//2、终结符表达式,实现与文法中的终结符相关联的解释操作,这里是数字  
public class NumberExpression implements Expression {
    private int number;

    public NumberExpression(int number) {
        this.number = number;
    }

    public NumberExpression(String number) {
        this.number = Integer.parseInt(number);
    }

    @Override
    public int interpret() {
        return this.number;
    }
}

// 3、非终结符表达式,实现与文法中的非终结符相关联的解释操作,这里是运算符
public class AdditionExpression implements Expression {
    private Expression firstExpression, secondExpression;

    public AdditionExpression(Expression firstExpression, Expression secondExpression) {
        this.firstExpression = firstExpression;
        this.secondExpression = secondExpression;
    }

    @Override
    public int interpret() {
        return Math.addExact(this.firstExpression.interpret(), this.secondExpression.interpret());
    }

    @Override
    public String toString() {
        return "+";
    }
}
public class SubtractionExpression implements Expression {
    private Expression firstExpression, secondExpression;

    public SubtractionExpression(Expression firstExpression, Expression secondExpression) {
        this.firstExpression = firstExpression;
        this.secondExpression = secondExpression;
    }

    @Override
    public int interpret() {
        return Math.subtractExact(this.firstExpression.interpret(), this.secondExpression.interpret());
    }

    @Override
    public String toString() {
        return "-";
    }
}
public class MultiplicationExpression implements Expression {
    private Expression firstExpression, secondExpression;

    public MultiplicationExpression(Expression firstExpression, Expression secondExpression) {
        this.firstExpression = firstExpression;
        this.secondExpression = secondExpression;
    }

    @Override
    public int interpret() {
        return Math.multiplyExact(this.firstExpression.interpret(), this.secondExpression.interpret());
    }

    @Override
    public String toString() {
        return "*";
    }
}

// 4、表达式分析器,将输入解析成表达式并执行相关的计算
public class ExpressionParser {
    private static final String ADD = "+";

    private static final String SUBTRACT = "-";

    private static final String MULTIPLY = "*";

    private static final String SPLITTER = " ";

    private LinkedList<Expression> stack = new LinkedList();

    public int parse(String str) {
        String[] tokenList = str.split(SPLITTER);
        for (String symbol : tokenList) {
            if (!isOperator(symbol)) {
                Expression numberExpression = new NumberExpression(symbol);
                stack.push(numberExpression);
            } else {
                Expression firstExpression = stack.pop();
                Expression secondExpression = stack.pop();
                Expression operator = getExpressionObject(firstExpression, secondExpression, symbol);
                if (operator == null) {
                    throw new RuntimeException("unknown symbol: " + symbol);
                }
                int result = operator.interpret();
                NumberExpression resultExpression = new NumberExpression(result);
                stack.push(resultExpression);
            }
        }
        return stack.pop().interpret();
    }

    private boolean isOperator(String symbol) {
        return symbol.equals(ADD) || symbol.equals(SUBTRACT) || symbol.equals(MULTIPLY);

    }

    private Expression getExpressionObject(Expression firstExpression, Expression secondExpression, String symbol) {
        switch (symbol) {
            case ADD:
                return new AdditionExpression(firstExpression, secondExpression);
            case SUBTRACT:
                return new SubtractionExpression(firstExpression, secondExpression);
            case MULTIPLY:
                return new MultiplicationExpression(firstExpression, secondExpression);
            default:
                return null;
        }
    }
}

// 5、客户端
public class InterpreterClient {
    public void test() {
        // (1) 定义输入
        String input = "2 1 5 + *";
        System.out.println("input is: " + input);
        // (2) 创建表达式分析器实例
        ExpressionParser expressionParser = new ExpressionParser();
        // (3) 执行分析操作
        int result = expressionParser.parse(input);
        System.out.println("result: " + result);
    }
}

获取源码可以访问github对应代码仓。

适用场景

在以下情况下可以考虑使用解释器模式:
(1)如果需要解释执行的语言中的句子,可以表示为一个抽象语法树,可以考虑使用解释器模式。如SQL 解析、符号处理引擎、正则表达式等。
(2) 对于重复出现的问题,如果可以使用简单的语言来表达,可以考虑使用解释器模式。
(3) 一个简单语法需要解释的场景,可以考虑使用解释器模式。对于简单语法,由于其文法规则较简单,使用解释器模式要优于语法分析程序。

优缺点

解释器模式有以下优点:
(1) 可扩展性好。因为该模式使用类来表示文法规则,可以使用继承来改变或扩展该文法。
(2) 易于实现简单的文法。定义抽象语法树各个节点的类的实现大体相似。
但是该模式也存在以下缺点:
(1) 可利用场景比较少。
(2) 对于复杂的文法比较难维护。包含许多规则的文法可能难以管理和维护。
(3) 会引起类膨胀。随着文法规则的复杂化,类的规模也会随之膨胀。
(4) 使用了大量的循环和递归,需要考虑效率问题。

参考

《设计模式 可复用面向对象软件的基础》 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides 著, 李英军, 马晓星等译
https://design-patterns.readthedocs.io/zh_CN/latest/behavioral_patterns/mediator.html 解释器模式
https://refactoringguru.cn/design-patterns/mediator 解释器模式
https://www.runoob.com/design-pattern/mediator-pattern.html 解释器模式
https://www.cnblogs.com/adamjwh/p/10959987.html 简说设计模式——解释器模式
https://springframework.guru/gang-of-four-design-patterns/interpreter-pattern/ Interpreter Pattern文章来源地址https://www.toymoban.com/news/detail-631667.html

到了这里,关于解释器模式(Interpreter)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 设计模式:解释器模式

    解释器模式(Interpreter Pattern)是一种行为型设计模式,它定义了一种语言的文法,并且定义了该语言中各个元素的解释器。通过使用解释器,可以解析和执行特定的语言表达式。 解释器模式的核心思想是将一个语言的文法表示为一个类的层次结构,并使用该类的实例来表示

    2024年02月07日
    浏览(30)
  • 设计模式详解-解释器模式

    类型:行为型模式 实现原理:实现了一个表达式接口,该接口使用标识来解释语言中的句子 作用:给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器来解释。 主要解决:一些重复的固定文法分别创建解释器会很麻烦 何时使用:某一种特定类型的问题发生的

    2024年02月12日
    浏览(37)
  • 设计模式(23)解释器模式

    一、介绍: 1、定义:解释器(Interpreter)模式是一种对象的行为模式。给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。 2、组成结构: (1)AbstractExpression(抽象表达式):约定解释器的解释操作,主要是一个interpret()方

    2024年02月06日
    浏览(36)
  • 解释器模式(Interpreter)

    解释器模式是一种行为设计模式,可以解释语言的语法或表达式。给定一个语言,定义它的文法的一种表示,然后定义一个解释器,使用该文法来解释语言中的句子。解释器模式提供了评估语言的语法或表达式的方式。 解释器模式包含如下角色: Context,上下文,包含解释器

    2024年02月14日
    浏览(27)
  • 解释器设计模式

    解释器设计模式(Interpreter Pattern)是一种行为型设计模式,它定义了一种语言的文法,并建立一个解释器来解释该语言中的句子。这种模式通常用于需要解释或执行一种特定类型的语言的场景,例如编程语言的编译器或解释器、规则引擎系统等。 关键组成部分 抽象表达式(

    2024年02月21日
    浏览(37)
  • 设计模式(行为型模式)解释器模式

       解释器模式(Interpreter Pattern) 是一种行为设计模式,用于解释特定语言或处理特定问题领域的语法或表达式。它定义了一种语言的语法表示,并使用该表示来解释语言中的句子。通常用于构建解析器、编译器和规则评估引擎等场景。 在解释器模式中,有以下关键角色:

    2024年02月20日
    浏览(33)
  • 设计模式之解释器模式笔记

    记录下学习设计模式-解释器模式的写法。JDK使用版本为1.8版本。 意图 :定义一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。 结构 : 其中: AbstractExpression 声明一个程序的解释操作,这个接口为抽象语法树中所有的结点所

    2024年02月11日
    浏览(34)
  • js设计模式:解释器模式

    对文本进行解释和编译的时候,就会用到解释器模式 比如你写了一段js代码,js引擎就会去解释并执行这段代码 webpack中的各种loader就是用来解释各种文件类型的,并将其解释为js可识别的代码

    2024年02月22日
    浏览(29)
  • Java设计模式-解释器模式

    一、概述 如上图,设计一个软件用来进行加减计算。我们第一想法就是使用工具类,提供对应的加法和减法的工具方法。 上面的形式比较单一、有限,如果形式变化非常多,这就不符合要求,因为加法和减法运算,两个运算符与数值可以有无限种组合方式。比如 1+2+3+4+5、

    2024年01月17日
    浏览(28)
  • 设计模式之解释器模式(下)

    3)Context的作用 1.概述 在解释器模式中,环境类Context用于存储解释器之外的一些全局信息,它通常作为参数被传递到所有表达式的解释方法interpret()中,可以在Context对象中存储和访问表达式解释器的状态,向表达式解释器提供一些全局的、公共的数据,此外还可以在Context中

    2024年04月12日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包