图像分段线性变换(Piecewise Linear Transformation)是一种图像处理技术,它通过对不同区域的像素值应用不同的线性变换来调整图像的对比度和亮度。这通常用于增强图像中特定区域的细节或调整图像的整体外观。数学上,分段线性变换可以表示为以下形式:
对于输入图像中的每个像素点
(
x
,
y
)
(x, y)
(x,y),其输出值
f
′
(
x
,
y
)
f'(x, y)
f′(x,y) 可以通过以下分段线性函数来计算:
f
′
(
x
,
y
)
=
{
a
1
⋅
f
(
x
,
y
)
+
b
1
,
if
f
(
x
,
y
)
<
x
1
a
2
⋅
f
(
x
,
y
)
+
b
2
,
if
x
1
≤
f
(
x
,
y
)
<
x
2
⋮
a
n
⋅
f
(
x
,
y
)
+
b
n
,
if
x
n
−
1
≤
f
(
x
,
y
)
<
x
n
f'(x, y) = \begin{cases} a_1 \cdot f(x, y) + b_1, & \text{if } f(x, y) < x_1 \\ a_2 \cdot f(x, y) + b_2, & \text{if } x_1 \leq f(x, y) < x_2 \\ \vdots \\ a_n \cdot f(x, y) + b_n, & \text{if } x_{n-1} \leq f(x, y) < x_n \\ \end{cases}
f′(x,y)=⎩
⎨
⎧a1⋅f(x,y)+b1,a2⋅f(x,y)+b2,⋮an⋅f(x,y)+bn,if f(x,y)<x1if x1≤f(x,y)<x2if xn−1≤f(x,y)<xn
其中,
f
(
x
,
y
)
f(x, y)
f(x,y) 是原始图像中像素点
(
x
,
y
)
(x, y)
(x,y) 的灰度值,
(
x
1
,
x
2
,
…
,
x
n
)
(x_1, x_2, \ldots, x_n)
(x1,x2,…,xn) 是分段点,
(
a
1
,
a
2
,
…
,
a
n
)
(a_1, a_2, \ldots, a_n)
(a1,a2,…,an) 是斜率,
(
b
1
,
b
2
,
…
,
b
n
)
(b_1, b_2, \ldots, b_n)
(b1,b2,…,bn) 是截距。
下面是一个使用OpenCV库进行图像分段线性变换的Python代码示例:文章来源地址https://www.toymoban.com/news/detail-632084.html
import cv2
import numpy as np
def piecewise_linear_transform(image, breakpoints, slopes, intercepts):
# 创建一个空白图像,用于存储变换后的结果
transformed_image = np.zeros_like(image)
for i in range(len(breakpoints) + 1):
lower_bound = breakpoints[i - 1] if i > 0 else 0
upper_bound = breakpoints[i] if i < len(breakpoints) else 255
# 对当前分段内的像素应用线性变换
mask = (image >= lower_bound) & (image < upper_bound)
transformed_image[mask] = slopes[i] * image[mask] + intercepts[i]
return transformed_image
# 读取图像
input_image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE)
# 定义分段点、斜率和截距
breakpoints = [100, 150]
slopes = [1.5, 0.7, 1.2]
intercepts = [-100, 50, 0]
# 应用分段线性变换
output_image = piecewise_linear_transform(input_image, breakpoints, slopes, intercepts)
# 显示原始图像和变换后的图像
cv2.imshow('Original Image', input_image)
cv2.imshow('Transformed Image', output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
文章来源:https://www.toymoban.com/news/detail-632084.html
到了这里,关于图像分段线性变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!