何时使用Elasticsearch而不是MySql

这篇具有很好参考价值的文章主要介绍了何时使用Elasticsearch而不是MySql。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

MySQL 和 Elasticsearch 是两种不同的数据管理系统,它们各有优劣,适用于不同的场景。本文将从以下几个方面对它们进行比较和分析:

  • 数据模型
  • 查询语言
  • 索引和搜索
  • 分布式和高可用
  • 性能和扩展性
  • 使用场景

数据模型

MySQL 是一个关系型数据库管理系统(RDBMS),它使用表(table)来存储结构化的数据,每个表由多个行(row)和列(column)组成,每个列有一个预定义的数据类型,例如整数、字符串、日期等。MySQL 支持主键、外键、约束、触发器等关系型数据库的特性,以保证数据的完整性和一致性。

Elasticsearch 是一个基于 Lucene 的搜索引擎,它使用文档(document)来存储半结构化或非结构化的数据,每个文档由多个字段(field)组成,每个字段可以有不同的数据类型,例如文本、数字、布尔、数组等。Elasticsearch 支持动态映射(dynamic mapping),可以根据数据自动推断字段的类型和索引方式。

MySQL 和 Elasticsearch 的数据模型有以下几点区别:

  • MySQL 的数据模型是严格的,需要事先定义好表的结构和约束,而 Elasticsearch 的数据模型是灵活的,可以随时添加或修改字段。
  • MySQL 的数据模型是二维的,每个表只有行和列两个维度,而 Elasticsearch 的数据模型是多维的,每个文档可以有嵌套的对象或数组。
  • MySQL 的数据模型是关系型的,可以通过连接(join)多个表来查询相关的数据,而 Elasticsearch 的数据模型是非关系型的,不支持连接操作,需要通过嵌套文档或父子文档来实现关联查询。

推荐博主开源的 H5 商城项目waynboot-mall,这是一套全部开源的微商城项目,包含三个项目:运营后台、H5 商城前台和服务端接口。实现了商城所需的首页展示、商品分类、商品详情、商品 sku、分词搜索、购物车、结算下单、支付宝/微信支付、收单评论以及完善的后台管理等一系列功能。 技术上基于最新得 Springboot3.0、jdk17,整合了 MySql、Redis、RabbitMQ、ElasticSearch 等常用中间件。分模块设计、简洁易维护,欢迎大家点个 star、关注博主。

github 地址:https://github.com/wayn111/waynboot-mall

查询语言

MySQL 使用标准的 SQL 语言来查询和操作数据,SQL 语言是一种声明式的语言,可以通过简洁的语法来表达复杂的逻辑。SQL 语言支持多种查询类型,例如选择(select)、插入(insert)、更新(update)、删除(delete)、聚合(aggregate)、排序(order by)、分组(group by)、过滤(where)、连接(join)等。

Elasticsearch 使用 JSON 格式的查询 DSL(Domain Specific Language)来查询和操作数据,查询 DSL 是一种基于 Lucene 查询语法的语言,可以通过嵌套的 JSON 对象来构建复杂的查询。查询 DSL 支持多种查询类型,例如全文检索(full-text search)、结构化检索(structured search)、地理位置检索(geo search)、度量检索(metric search)等。

MySQL 和 Elasticsearch 的查询语言有以下几点区别:

  • MySQL 的查询语言是通用的,可以用于任何关系型数据库系统,而 Elasticsearch 的查询语言是专用的,只能用于 Elasticsearch 系统。
  • MySQL 的查询语言是字符串形式的,需要拼接或转义特殊字符,而 Elasticsearch 的查询语言是 JSON 形式的,可以直接使用对象或数组表示。
  • MySQL 的查询语言是基于集合论和代数运算的,可以进行集合操作和数学运算,而 Elasticsearch 的查询语言是基于倒排索引和相关度评分的,可以进行全文匹配和相似度计算。

索引和搜索

MySQL 使用 B+树作为主要的索引结构,B+树是一种平衡多路搜索树,它可以有效地存储和检索有序的数据。MySQL 支持主键索引、唯一索引、普通索引、全文索引等多种索引类型,以加速不同类型的查询。MySQL 也支持外部存储引擎,例如 InnoDB、MyISAM、Memory 等,不同的存储引擎有不同的索引和锁机制。

Elasticsearch 使用倒排索引作为主要的索引结构,倒排索引是一种将文档中的词和文档的映射关系存储的数据结构,它可以有效地支持全文检索。Elasticsearch 支持多种分词器(analyzer)和分词过滤器(token filter),以对不同语言和场景的文本进行分词和处理。Elasticsearch 也支持多种搜索类型,例如布尔搜索(boolean search)、短语搜索(phrase search)、模糊搜索(fuzzy search)、通配符搜索(wildcard search)等,以实现不同精度和召回率的检索。

MySQL 和 Elasticsearch 的索引和搜索有以下几点区别:

  • MySQL 的索引是基于数据的值的,可以精确地定位数据的位置,而 Elasticsearch 的索引是基于数据的内容的,可以近似地匹配数据的含义。
  • MySQL 的索引是辅助的,需要手动创建和维护,而 Elasticsearch 的索引是主要的,自动创建和更新。
  • MySQL 的索引是局部的,只针对单个表或列,而 Elasticsearch 的索引是全局的,涵盖所有文档和字段。

分布式和高可用

MySQL 是一个单机数据库系统,它只能运行在一台服务器上,如果服务器出现故障或负载过高,就会影响数据库的可用性和性能。为了解决这个问题,MySQL 提供了多种复制(replication)和集群(cluster)方案,例如主从复制(master-slave replication)、双主复制(master-master replication)、MySQL Cluster、MySQL Fabric 等,以实现数据的冗余和负载均衡。

Elasticsearch 是一个分布式数据库系统,它可以运行在多台服务器上,形成一个集群(cluster)。每个集群由多个节点(node)组成,每个节点可以承担不同的角色,例如主节点(master node)、数据节点(data node)、协调节点(coordinating node)等。每个节点可以存储多个索引(index),每个索引可以划分为多个分片(shard),每个分片可以有多个副本(replica)。Elasticsearch 通过一致性哈希算法(consistent hashing algorithm)来分配分片到不同的节点上,并通过心跳检测(heartbeat check)来监控节点的状态。如果某个节点出现故障或加入集群,Elasticsearch 会自动进行分片的重新分配和平衡。

MySQL 和 Elasticsearch 的分布式和高可用有以下几点区别:

  • MySQL 的分布式和高可用是可选的,需要额外配置和管理,而 Elasticsearch 的分布式和高可用是内置的,无需额外操作。
  • MySQL 的分布式和高可用是基于复制或共享存储的,需要保证数据一致性或可用性之间的权衡,而 Elasticsearch 的分布式和高可用是基于分片和副本的,可以根据需求调整数据冗余度或容错能力。
  • MySQL 的分布式和高可用是静态的,需要手动扩展或缩容集群规模,而 Elasticsearch 的分布式和高可用是动态的,可以自动适应集群变化。

性能和扩展性

MySQL 是一个面向事务(transaction)的数据库系统,它支持 ACID 特性(原子性、一致性、隔离性、持久性),以保证数据操作的正确性和完整性。MySQL 使用锁机制来实现事务隔离级别(isolation level),不同的隔离级别有不同的并发性能和一致性保证。MySQL 也使用缓冲池(buffer pool)来缓存数据和索引,以提高查询效率。MySQL 的性能主要取决于硬件资源、存储引擎、索引设计、查询优化等因素。

Elasticsearch 是一个面向搜索(search)的数据库系统,它支持近实时(near real-time)的索引和查询,以保证数据操作的及时性和灵活性。Elasticsearch 使用分片和副本来实现数据的分布式存储和并行处理,不同的分片数和副本数有不同的写入吞吐量和读取延迟。Elasticsearch 也使用缓存(cache)和内存映射文件(memory-mapped file)来加速数据和索引的访问,以提高搜索效率。Elasticsearch 的性能主要取决于集群规模、分片策略、文档结构、查询复杂度等因素。

MySQL 和 Elasticsearch 的性能和扩展性有以下几点区别:

  • MySQL 的性能和扩展性是有限的,它受到单机资源、锁竞争、复制延迟等因素的限制,而 Elasticsearch 的性能和扩展性是无限的,它可以通过增加节点、分片、副本等方式来水平扩展集群。
  • MySQL 的性能和扩展性是以牺牲搜索能力为代价的,它不能支持复杂的全文检索和相关度评分,而 Elasticsearch 的性能和扩展性是以牺牲事务能力为代价的,它不能保证数据操作的原子性和一致性。
  • MySQL 的性能和扩展性是以提高写入速度为目标的,它优化了数据插入和更新的效率,而 Elasticsearch 的性能和扩展性是以提高读取速度为目标的,它优化了数据检索和分析的效率。

使用场景

MySQL 和 Elasticsearch 适用于不同的使用场景,根据不同的业务需求,可以选择合适的数据库系统或组合使用两者。以下是一些常见的使用场景:

  • 如果需要存储结构化或半结构化的数据,并且需要保证数据操作的正确性和完整性,可以选择 MySQL 作为主要数据库系统。例如,电商网站、社交网络、博客平台等。
  • 如果需要存储非结构化或多样化的数据,并且需要支持复杂的全文检索和相关度评分,可以选择 Elasticsearch 作为主要数据库系统。例如搜索引擎、日志分析、推荐系统等。
  • 如果需要存储和分析大量的时序数据,并且需要支持实时的聚合和可视化,可以选择Elasticsearch作为主要数据库系统。例如,物联网、监控系统、金融市场等。
  • 如果需要同时满足上述两种需求,并且可以容忍一定程度的数据不一致或延迟,可以将 MySQL 作为主数据库系统,并将部分数据同步到 Elasticsearch 作为辅助数据库系统。例如新闻网站、电影网站、招聘网站等。

自此本文讲解内容到此结束,感谢您的阅读,希望本文对您有所帮助。

关注公众号【waynblog】每周分享技术干货、开源项目、实战经验、高效开发工具等,您的关注将是我的更新动力!文章来源地址https://www.toymoban.com/news/detail-632230.html

到了这里,关于何时使用Elasticsearch而不是MySql的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Enterprise:使用 MySQL connector 同步 MySQL 数据到 Elasticsearch

    Elastic MySQL 连接器是 MySQL 数据源的连接器。它可以帮我们把 MySQL 里的数据同步到 Elasticsearch 中去。在今天的文章里,我来详细地描述如何一步一步地实现。 在下面的展示中,我将使用 Elastic Stack 8.8.2 来进行展示。 无缝集成:将 Elasticsearch 连接到 MongoDB Enterprise:使用 MySQL c

    2024年02月16日
    浏览(44)
  • 解决cmd命令提示符输入:mysql -u root -p ,报错提示“mysql 不是内部或外部命令,也不是可运行的程序”问题:

    1、问题描述: mysql使用系统自带命令行工具连接,输入“mysql -u root -p” ,报错提示“mysql 不是内部或外部命令,也不是可运行的程序”问题。  2、问题分析: 没有将mysql的bin目录路径添加到环境变量中。 3、解决办法: 将mysql对应的bin目录路径添加到环境变量中。 (1)、

    2024年02月12日
    浏览(50)
  • ‘mysql‘ 不是内部或外部命令,也不是可运行的程序或批处理文件

    一、问题现象 在Win 10环境下,按Windows+R键,打开命令行窗口。 输入mysql,回车后提示如下错误:“\\\'mysql\\\'不是内部或外部命令,也不是可运行的程序或批处理文件。” 二、解决办法 在【我的电脑】(或【此电脑】)图标上点击鼠标右键,点击【属性】。在打开页面的右侧有【相

    2024年02月13日
    浏览(33)
  • ‘mysql‘不是内部或外部命令,也不是可运行的程序或批处理文件

    \\\'mysql’不是内部或外部命令,也不是可运行的程序或批处理文件 🌼刚接触MySQL的朋友经常会遇到这样的问题,因为在安装MySQL时,过程较为繁琐,好不容易安装上就没有完善安装环境,等慢慢接触后就会遇到这样类似的问题。 一、出现原因 遇到这种 不是内部或外部文件 提示

    2023年04月09日
    浏览(39)
  • 正排倒排,并不是 MySQL 的排序的全部!

    一个悠闲的上午,小航送了我,一袋坚果,他看我吃的正香,慢慢问道:”温哥,mysql的排序,有什么要注意的吗,不就是正排倒排吗?” 我一听他问我的问题,顿感坚果不香了,但是为了技术(mainzi),我装作大师的说道: “正排倒排,当然不是全部,你最少要知道,2个

    2024年02月09日
    浏览(34)
  • 使用Logstash同步mysql数据到Elasticsearch(亲自踩坑)

    这篇文章主要介绍了如何使用Logstash同步mysql数据到Elasticsearch(亲自踩坑),如果帮助到了大家,希望用你毛茸茸的小手点个赞🤗;如有错误或未考虑周全的地方,希望在评论区留言🫡 Logstash官方文档提供了解决方案 一. 安装Logstash Logstash下载地址 下载版本一定要和Elastics

    2024年04月09日
    浏览(52)
  • Java中Elasticsearch使用类似MySQL的OR和AND查询

    本文用实例来介绍如何使用Spring Data Elasticsearch的ElasticsearchRestTemplate来操作ES,在Java中Elasticsearch使用类似MySQL的OR和AND进行多条件查询。 官网 Elasticsearch Operations 一种复合查询,把其余类型的查询包裹进来,支持以下三种逻辑关系。 ES查询实例如下: 在Java中代码示例: 该m

    2024年02月02日
    浏览(34)
  • Springcloud Alibaba 使用Canal将MySql数据实时同步到Elasticsearch

    本篇文章在Springcloud Alibaba使用Canal将Mysql数据实时同步到Redis保证缓存的一致性-CSDN博客 基础上使用canal将mysql数据实时同步到Elasticsearch。 公共包 实体类Sku @Column注解 用来标识实体类中属性与数据表中字段的对应关系 name 定义了被标注字段在数据库表中所对应字段的名称;由

    2024年02月03日
    浏览(41)
  • 使用Logstash同步mysql数据到Elasticsearch(亲自踩坑)_将mysql中的数据导入es搜索引擎利用logstash(1)

    先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7 深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前! 因此收集整理了一份《2024年最新大数据全套学习资料》,

    2024年04月28日
    浏览(49)
  • 使用Logstash和JDBC将MySQL的数据导入到Elasticsearch(ES)的过程

    使用Logstash和JDBC将MySQL的数据导入到Elasticsearch(ES)的过程包含多个步骤。请注意,首先你需要准备好的JDBC驱动,Logstash实例,Elasticsearch实例,以及你希望导入的MySQL数据。 安装Logstash JDBC Input Plugin :Logstash包含大量插件,其中一个就是JDBC Input Plugin,可以用于从JDBC兼容的数据库

    2024年02月15日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包