基于diffusers训练lora,AI换装

这篇具有很好参考价值的文章主要介绍了基于diffusers训练lora,AI换装。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

阿里云登录 - 欢迎登录阿里云,安全稳定的云计算服务平台欢迎登录阿里云,全球领先的云计算及人工智能科技公司,阿里云为200多个国家和地区的企业、开发者和政府机构提供云计算基础服务及解决方案。阿里云云计算、安全、大数据、人工智能、企业应用、物联网等云计算服务。https://pai.console.aliyun.com/?regionId=cn-shanghai&spm=5176.12818093.ProductAndResource--ali--widget-product-recent.dre0.2f5b16d01JhuDy&workspaceId=322809#/dsw-gallery-workspace?category=all&pageNum=1在阿里云PAI平台上拍

torch1.13-gpu-py310-cu117  V100 16显存

基于diffusers训练lora,AI换装,大模型、多模态和生成,人工智能

1.diffusions安装

1.1 下载diffussers库并安装依赖

! git clone https://github.com/huggingface/diffusers
! cd diffusers && git checkout e126a82cc5d9afbeb9b476455de24dd3e7dd358a
! cd diffusers && pip install .

1.2 验证是够成功安装

import diffusers

1.3 配置accelerate

! mkdir -p /root/.cache/huggingface/accelerate/
! wget -c http://pai-vision-data-sh.oss-cn-shanghai.aliyuncs.com/aigc-data/accelerate/default_config.yaml -O /root/.cache/huggingface/accelerate/default_config.yaml

1.4 安装文生图算法相关依赖

! cd diffusers/examples/text_to_image && pip install -r requirements.txt

1.5 下载stable-diffusion-webui

import os

! apt update
! apt install -y aria2

def aria2(url, filename, d):
    !aria2c --console-log-level=error -c -x 16 -s 16 {url} -o {filename} -d {d}
    
url_prefix = {
    "cn-shanghai": "http://pai-vision-data-sh.oss-cn-shanghai-internal.aliyuncs.com",
    "cn-hangzhou": "http://pai-vision-data-hz2.oss-cn-hangzhou-internal.aliyuncs.com",
    "cn-shenzhen": "http://pai-vision-data-sz.oss-cn-shenzhen-internal.aliyuncs.com",
    "cn-beijing": "http://pai-vision-data-bj.oss-cn-beijing-internal.aliyuncs.com", 
}

dsw_region = os.environ.get("dsw_region")
prefix = url_prefix[dsw_region] if dsw_region in url_prefix else "http://pai-vision-data-sh.oss-cn-shanghai.aliyuncs.com"


! git clone https://gitcode.net/mirrors/AUTOMATIC1111/stable-diffusion-webui.git
%cd stable-diffusion-webui
! git checkout a9fed7c364061ae6efb37f797b6b522cb3cf7aa2
repositories_url = f"{prefix}/aigc-data/code/repositories.tar.gz"
aria2(repositories_url, repositories_url.split("/")[-1], "./")
! tar -xf repositories.tar.gz
%cd extensions
! git clone https://gitcode.net/mirrors/DominikDoom/a1111-sd-webui-tagcomplete.git
! git clone https://gitcode.net/ranting8323/stable-diffusion-webui-localization-zh_CN
%cd .. 
! wget -c http://pai-vision-data-sh.oss-cn-shanghai.aliyuncs.com/aigc-data/webui_config/config_tryon.json -O config.json
%cd ..

2.stable diffusion+lora模型finetune

2.1 准备数据集以及训练代码

! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/cloth_train_example.tar.gz && tar -xvf cloth_train_example.tar.gz
! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/train_text_to_image_lora.py

2.2 查看示例

from PIL import Image
display(Image.open("cloth_train_example/train/20230407174450.jpg"))

2.3 下载预训练模型病转成diffusers格式,可在hf上下载

safety_checker_url = f"{prefix}/aigc-data/hug_model/models--CompVis--stable-diffusion-safety-checker.tar.gz"
aria2(safety_checker_url, safety_checker_url.split("/")[-1], "./")
! tar -xf models--CompVis--stable-diffusion-safety-checker.tar.gz -C /root/.cache/huggingface/hub/

clip_url = f"{prefix}/aigc-data/hug_model/models--openai--clip-vit-large-patch14.tar.gz"
aria2(clip_url, clip_url.split("/")[-1], "./")
! tar -xf models--openai--clip-vit-large-patch14.tar.gz -C /root/.cache/huggingface/hub/

model_url = f"{prefix}/aigc-data/sd_models/chilloutmix_NiPrunedFp32Fix.safetensors"
aria2(model_url, model_url.split("/")[-1], "stable-diffusion-webui/models/Stable-diffusion/")

! python diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py \
--checkpoint_path=stable-diffusion-webui/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors \
--dump_path=chilloutmix-ni --from_safetensors

2.4 模型训练

! export MODEL_NAME="chilloutmix-ni" && \
export DATASET_NAME="cloth_train_example" && \
accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --dataset_name=$DATASET_NAME --caption_column="text" \
  --width=640 --height=768 --random_flip \
  --train_batch_size=1 \
  --num_train_epochs=200 --checkpointing_steps=5000 \
  --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
  --seed=42 \
  --output_dir="cloth-model-lora" \
  --validation_prompt="cloth1" --validation_epochs=100

2.5 准备webui所需的模型文件

2.5.1 将lora模型转化成webui支持格式并拷贝至webui所在目录

! wget -c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/convert-to-safetensors.py
! python convert-to-safetensors.py --file='cloth-model-lora/pytorch_lora_weights.bin'
! mkdir stable-diffusion-webui/models/Lora
! cp cloth-model-lora/pytorch_lora_weights_converted.safetensors stable-diffusion-webui/models/Lora/cloth_lora_weights.safetensors

2.5.2 准备额外文件,可以在hf上下载

detection_url = f"{prefix}/aigc-data/codeformer/detection_Resnet50_Final.pth"
aria2(detection_url, detection_url.split("/")[-1], "stable-diffusion-webui/repositories/CodeFormer/weights/facelib/")
parse_url = f"{prefix}/aigc-data/codeformer/parsing_parsenet.pth"
aria2(parse_url, parse_url.split("/")[-1], "stable-diffusion-webui/repositories/CodeFormer/weights/facelib/")
codeformer_url = f"{prefix}/aigc-data/codeformer/codeformer-v0.1.0.pth"
aria2(codeformer_url, codeformer_url.split("/")[-1], "stable-diffusion-webui/models/Codeformer/")

embedding_url = f"{prefix}/aigc-data/embedding/ng_deepnegative_v1_75t.pt"
aria2(embedding_url, embedding_url.split("/")[-1], "stable-diffusion-webui/embeddings/")

model_lora_url = f"{prefix}/aigc-data/lora/koreanDollLikeness_v10.safetensors"
aria2(model_lora_url, model_lora_url.split("/")[-1], "stable-diffusion-webui/models/Lora/")

3.启动webui

! cd stable-diffusion-webui && python -m venv --system-site-packages --symlinks venv
! cd stable-diffusion-webui && \
  sed -i 's/can_run_as_root=0/can_run_as_root=1/g' webui.sh && \
  ./webui.sh --no-download-sd-model --xformers

4.参数

正向prompt: cloth1,<lora:koreanDollLikeness_v10:0.4>, (extremely detailed CG unity 8k wallpaper),(RAW photo, best quality), (realistic, photo-realistic:1.2), a close up portrait photo, 1girl, shopping mall rooftop cafe, outdoor, smile, (high detailed skin:1.4), puffy eyes, gorgeous hair, air bangs, brown black hair, soft lighting, high quality, <lora:cloth_lora_weights:1>
负向prompt: ng_deepnegative_v1_75t,paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), (grayscale:1.2), skin spots, acnes, skin blemishes, age spot, glans,extra fingers,fewer fingers,(watermark:1.2),(letters:1.2),(nsfw:1.2),teeth
采样方法: Eular a
采样步数: 50
宽高: 640,768
随机种子: 1400244389
CFG scale 7
使用面部修复

基于diffusers训练lora,AI换装,大模型、多模态和生成,人工智能

 文章来源地址https://www.toymoban.com/news/detail-632695.html

到了这里,关于基于diffusers训练lora,AI换装的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LoRa模型训练教程(炼丹,Stable Diffusion)

    何为LoRA?LoRA并不是扩散模型专有的技术,而是从隔壁语言模型(LLM)迁移过来的,旨在解决避免将整个模型参数拷贝下来才能对模型进行调校的问题。因为大型语言模型的参数量过于恐怖,比如最近新出的GPT-4参数量约为100 万亿。 LoRA采用的方式是向原有的模型中插入新的数

    2024年02月10日
    浏览(40)
  • Stable Diffusion Lora模型训练详细教程

    通过Lora小模型可以控制很多特定场景的内容生成。 但是那些模型是别人训练好的,你肯定很好奇,我也想训练一个自己的专属模型(也叫炼丹~_~)。 甚至可以训练一个专属家庭版的模型(family model),非常有意思。 将自己的训练好的Lora模型放到stableDiffusion lora 目录中,

    2024年02月02日
    浏览(47)
  • Stable Diffusion 使用lora-scripts WebUI训练LoRA模型

    如果对代码使用有困难的小伙伴可以直接使用WebUI版的LoRA模块进行训练操作。不管是训练人物,场景,风格,还是服装都是一套通用的模式,仅仅是使用不同的数据集得到的结果不同。 使用 git clone --recurse-submodules https://gi

    2024年02月17日
    浏览(48)
  • AutoDL 训练stable-diffusion lora模型

    1.创建镜像实例 2. 启动实例  3.启动服务 4.配置参数 4.1 基础模型选择   4.2 文件路径设置  5.点击打印训练信息  6.训练模型(点击Train model)    

    2024年02月16日
    浏览(50)
  • Stable Diffusion 指定模型人物,Lora 训练全流程

    在使用 Stable Diffusion 的时候,可以选择别人训练好的 Lora,那么如何训练自己的 Lora,本篇文章介绍了介绍了如何训练Lora,如何从训练的模型中选择好的模型,如何在 Stable Diffusion 中使用。 闲话不多说,直接实际操作吧,干货满满,记得关注哦,以免找不到了。首先我们来获

    2024年02月09日
    浏览(60)
  • 【 stable diffusion LORA模型训练最全最详细教程】

    个人网站:https://tianfeng.space/ 其实想写LORA模型训练很久了,一直没时间,总结一下现在主流的两种LORA模型训练方式,分别是朱尼酱的赛博丹炉和秋叶大佬的训练脚本,训练效果应该是赛博丹炉更好,我个人更推荐朱尼酱的赛博丹炉,界面炫酷,操作简单,作者也是花了很多

    2024年02月09日
    浏览(50)
  • 训练自己的个性化Stable diffusion模型,LORA

    需要训练自己的LORA模型 1、有sd-webui有训练插件功能 2、有单独的LORA训练开源web界面 两个开源训练界面 1、秋叶写的SD-Trainer https://github.com/Akegarasu/lora-scripts/  没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出 2、 Kohya\\\'s GUI GitHub - bmaltais/kohya_ss    成功了 遇到问题1, cudn

    2024年02月04日
    浏览(57)
  • AI绘画Stable DIffusion从lora应用到lora训练:看这一篇就够了

    大家好,我是程序员晓晓 今天给大家介绍一下如何进行Lora训练,制作自己的电子老婆。 在官网的解释说明中: 「A LoRA is a type of training method for fine-tuning Stable Diffusion models.」 什么意思? 这里引入了一个 fine-tuning 概念,也叫做“ 微调 ”训练, 那什么是微调训练呢,假设我

    2024年04月24日
    浏览(49)
  • Stable Diffusion:使用自己的数据集微调训练LoRA模型

    由于本人水平有限,难免出现错漏,敬请批评改正。 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理 专栏或我的个人主页查看 基于DETR的人脸伪装检测 YOLOv7训练自己的数据集(口罩检测) YOLOv8训练自己的数据集(足球检测) YOLOv5:TensorRT加速YOLOv5模型推理 YOLOv5:I

    2024年02月12日
    浏览(81)
  • 【在线AI绘画平台】哩布AI 在线生成图片、训练Lora、上传AI生成图简易实测

    网址 https://www.liblib.ai/ | 在线生成 https://www.liblib.ai/sd 网址 https://www.liblib.ai/ 显示的模型,每个模型点开后,会有相关的资源、生成的图集 侧边栏可收起 1.2.1 按模型筛选相关 Textual Inversion Hypernetwork Aesthetic Gradient LORA 、LyCORIS Controlnet Poses Wildcards Other 基础算法 基础算法 v1.5 基

    2024年02月05日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包