LeNet卷积神经网络-笔记

这篇具有很好参考价值的文章主要介绍了LeNet卷积神经网络-笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

LeNet卷积神经网络-笔记

LeNet卷积神经网络-笔记,人工智能,开发语言 Python,笔记,人工智能
手写分析LeNet网三卷积运算和两池化加两全连接层计算分析
LeNet卷积神经网络-笔记,人工智能,开发语言 Python,笔记,人工智能
修正上图中H,W的计算公式为下面格式
LeNet卷积神经网络-笔记,人工智能,开发语言 Python,笔记,人工智能

基于paddle飞桨框架构建测试代码

#输出结果为:
#[validation] accuracy/loss: 0.9530/0.1516
#这里准确率为95.3%
#通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。

详细源代码如下所示:文章来源地址https://www.toymoban.com/news/detail-634023.html

# 导入需要的包
import paddle
import numpy as np
from paddle.nn import Conv2D, MaxPool2D, Linear

## 组网
import paddle.nn.functional as F

# 定义 LeNet 网络结构
#==============================================================================
class LeNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(LeNet, self).__init__()
        # 创建卷积和池化层
        # 创建第1个卷积层
        self.conv1 = Conv2D(in_channels=1, out_channels=6, kernel_size=5)
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        # 尺寸的逻辑:池化层未改变通道数;当前通道数为6
        # 创建第2个卷积层
        self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        # 创建第3个卷积层
        self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)
        # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]
        # 输入size是[28,28],经过三次卷积和两次池化之后,C*H*W等于120
        self.fc1 = Linear(in_features=120, out_features=64)
        # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数
        self.fc2 = Linear(in_features=64, out_features=num_classes)
    # 网络的前向计算过程
    def forward(self, x):
        x = self.conv1(x)
        # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
        x = F.sigmoid(x)
        x = self.max_pool1(x)
        x = F.sigmoid(x)
        x = self.conv2(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]
        x = paddle.reshape(x, [x.shape[0], -1])
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        return x
#==========================================================================================
# 输入数据形状是 [N, 1, H, W]
# 这里用np.random创建一个随机数组作为输入数据
x = np.random.randn(*[3,1,28,28])
x = x.astype('float32')

# 创建LeNet类的实例,指定模型名称和分类的类别数目
model = LeNet(num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,
# 查看LeNet中所包含的子层
print(model.sublayers())
print(x.shape)
x = paddle.to_tensor(x)
print(x.shape)
for item in model.sublayers():
    # item是LeNet类中的一个子层
    # 查看经过子层之后的输出数据形状
    try:
        x = item(x)
    except:
        x = paddle.reshape(x, [x.shape[0], -1])
        x = item(x)
    if len(item.parameters())==2:
        # 查看卷积和全连接层的数据和参数的形状,
        # 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
        print(item.full_name(), x.shape, item.parameters()[0].shape, item.parameters()[1].shape)
    else:
        # 池化层没有参数
        print(item.full_name(), x.shape)  
#
'''
#显示子图层列表model.sublayers()
[
  Conv2D(1, 6, kernel_size=[5, 5], data_format=NCHW), 
  MaxPool2D(kernel_size=2, stride=2, padding=0), 
  Conv2D(6, 16, kernel_size=[5, 5], data_format=NCHW), 
  MaxPool2D(kernel_size=2, stride=2, padding=0), 
  Conv2D(16, 120, kernel_size=[4, 4], data_format=NCHW), 
  Linear(in_features=120, out_features=64, dtype=float32), 
  Linear(in_features=64, out_features=10, dtype=float32)
]
'''    

# -*- coding: utf-8 -*-
# LeNet 识别手写数字
import os
import random
import paddle
import numpy as np
import paddle
from paddle.vision.transforms import ToTensor
from paddle.vision.datasets import MNIST

# 定义训练过程
def train(model, opt, train_loader, valid_loader):
    # 开启0号GPU训练
    use_gpu = True
    paddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')
    print('start training ... ')
    model.train()
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            img = data[0]
            label = data[1] 
            # 计算模型输出
            logits = model(img)
            # 计算损失函数
            loss_func = paddle.nn.CrossEntropyLoss(reduction='none')
            loss = loss_func(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 2000 == 0:
                print("epoch: {}, batch_id: {}, loss is: {:.4f}".format(epoch, batch_id, float(avg_loss.numpy())))
            avg_loss.backward()
            opt.step()
            opt.clear_grad()

        model.eval()
        accuracies = []
        losses = []
        for batch_id, data in enumerate(valid_loader()):
            img = data[0]
            label = data[1] 
            # 计算模型输出
            logits = model(img)
            pred = F.softmax(logits)
            # 计算损失函数
            loss_func = paddle.nn.CrossEntropyLoss(reduction='none')
            loss = loss_func(logits, label)
            acc = paddle.metric.accuracy(pred, label)
            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

    # 保存模型参数
    paddle.save(model.state_dict(), 'mnist_LeNet.pdparams')


# 创建模型
model = LeNet(num_classes=10)
# 设置迭代轮数
EPOCH_NUM = 5
# 设置优化器为Momentum,学习率为0.001
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())
# 定义数据读取器
train_loader = paddle.io.DataLoader(MNIST(mode='train', transform=ToTensor()), batch_size=10, shuffle=True)
valid_loader = paddle.io.DataLoader(MNIST(mode='test', transform=ToTensor()), batch_size=10)
# 启动训练过程
train(model, opt, train_loader, valid_loader)

#输出结果为:
#[validation] accuracy/loss: 0.9530/0.1516
#这里准确率为95.3%
#通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。  

到了这里,关于LeNet卷积神经网络-笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能卷积神经网络,CNN,梯度下降

    CNN,是针对图像领域提出的神经网络。 得出的结论: 神经元存在局部感受区域,也称 感受野 细胞对角度有选择性 如细胞对垂直光条响应最强 细胞对运动方向有选择性 1.视觉系统是分层,分级处理的。从低到高堆叠使用卷积和池化。 2.神经系统是存在局部感受区域的。 第一

    2024年02月01日
    浏览(44)
  • 人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理

    卷积神经网络(CNN),也被称为ConvNets或Convolutional Neural Networks,是一种深度学习神经网络架构,主要用于处理和分析具有网格状结构的数据,特别是图像和视频数据。CNN 在计算机视觉任务中表现出色,因为它们能够有效地捕获和识别图像中的特征,具有平移不变性(transla

    2024年02月05日
    浏览(48)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型(LeNet、AlexNet、VGG、NiN)

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月12日
    浏览(41)
  • 24 深度卷积神经网络 AlexNet【李沐动手学深度学习v2课程笔记】(备注:含AlexNet和LeNet对比)

    目录 1. 深度学习机器学习的发展 1.1 核方法 1.2 几何学 1.3 特征工程 opencv 1.4  Hardware 2. AlexNet 3. 代码 2001 Learning with Kernels 核方法 (机器学习) 特征提取、选择核函数来计算相似性、凸优化问题、漂亮的定理 2000 Multiple View Geometry in computer vision 抽取特征、描述集合、(非)凸

    2024年03月12日
    浏览(64)
  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(39)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(60)
  • 经典卷积神经网络-LeNet-5

    LeNet-5是Yann LeCun等人在《Gradient-Based Learning Applied to Document Recogn》论文中提出的一个卷积神经网络,LeNet的基本思想和结构为后来更复杂的神经网络提供了灵感,并为研究者们提供了深入理解卷积神经网络的起点。 如图所示,这是论文中所介绍的LeNet-5网络结构。输入为一个3

    2024年02月03日
    浏览(31)
  • 【人工智能与机器学习】基于卷积神经网络CNN的猫狗识别

    很巧,笔者在几月前的计算机设计大赛作品设计中也采用了猫狗识别,目前已推国赛评选中 但当时所使用的方法与本次作业要求不太一致,又重新做了一遍,下文将以本次作业要求为主,介绍CNN卷积神经网络实现猫狗识别 猫狗识别和狗品种识别是计算机视觉领域中一个重要

    2024年02月13日
    浏览(37)
  • 毕业设计:基于卷积神经网络的古诗词生成系统 人工智能

    目录  前言 设计思路       一、课题背景与意义       二、算法理论原理                2.1 深度学习                2.2 神经网络       三、检测的实现                3.1 数据集                3.2 实验环境搭建                3.3 模型训练 最后        📅大

    2024年04月12日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包