线性代数(二) 矩阵及其运算

这篇具有很好参考价值的文章主要介绍了线性代数(二) 矩阵及其运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

行列式det(A) 其实表示的只是一个值 ∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b\\ c & d\end{vmatrix} = ad -bc acbd =adbc,其基本变化是基于这个值是不变。而矩阵表示的是一个数表。

定义

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
矩阵与线性变换的关系线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
即得
( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) ( x 1 x 2 . . . x n ) = ( y 1 y 2 . . . y n ) \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} \begin{pmatrix} x_1\\x_2\\...\\x_n\end{pmatrix} = \begin{pmatrix} y_1\\y_2\\...\\y_n\end{pmatrix} a11a21...am1a12a22...am2............a1na2n....amn x1x2...xn = y1y2...yn
可以推矩阵乘法
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
即得中的 y 1 = c 11 = a 11 x 1 + a 12 x 2 + . . . + a 1 n x m y_1=c_{11}=a_{11}x_1+a_{12}x_2+...+a_{1n}x_m y1=c11=a11x1+a12x2+...+a1nxm

矩阵乘法的提前: 第一个矩阵的列数和第二个矩阵的行数相同

同理可得矩阵加法
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

特殊的矩阵

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

矩阵的初等变换

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
行和列的关系
( x 1 x 2 . . . x n ) ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) = ( y 1 y 2 . . y n ) \begin{pmatrix} x_1&x_2&...&x_n\end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} = \begin{pmatrix} y_1&y_2&..&y_n\end{pmatrix} (x1x2...xn) a11a12...a1na21a22...a2n............am1am2....amn =(y1y2..yn)

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

初等变换与矩阵乘法的关系

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
E m ( i , j ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m 的 i 行与 j 行对调 ( 1 0 . . . 0 0 0 0 . . . 1 i 行 0 . . . . . . . . . . . . . . . . . 0 1 j 行 . . . 0 0 0 0 . . . 0 1 ) m E_m(i,j)=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行与j行对调 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 0 & ...& 1_{i行}& 0\\ ... & ... & ...& ....& ....\\ 0 & 1_{j行} & ...& 0& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i,j)= 10...0001i...00...............00....1j000....01 mi行与j行对调 10...0000...1j0...............01i....0000....01 m
E m ( i ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m 的 i 行乘于常数 k ( 1 0 . . . 0 0 0 k i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 0 . . . 0 1 ) m E_m(i(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m 的 i行乘于常数k \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & k_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(i(k))= 10...0001i...00...............00....1000....01 mi行乘于常数k 10...000ki...00...............00....1000....01 m
E m ( i j ( k ) ) = ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 0 . . . 1 j 行 0 0 0 . . . 0 1 ) m i 行的 k 倍加到 j 上 ( 1 0 . . . 0 0 0 1 i 行 . . . 0 0 . . . . . . . . . . . . . . . . . 0 k j 行 . . . 1 j 行 0 0 0 . . . 0 1 ) m E_m(ij(k))=\begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & 0 & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m i行的k倍加到j上 \begin{pmatrix} 1 & 0 & ...& 0& 0\\ 0 & 1_{i行} & ...& 0& 0\\ ... & ... & ...& ....& ....\\ 0 & k_{j行} & ...& 1_{j行}& 0\\ 0 & 0 & ... & 0& 1\end{pmatrix}_m Em(ij(k))= 10...0001i...00...............00....1j000....01 mi行的k倍加到j 10...0001i...kj0...............00....1j000....01 m
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

矩阵的运算

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

矩阵乘法运算规律

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

矩阵的转置

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
A n ∗ m ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) 转置为 A n ∗ m T ( a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . . a 1 n a 2 n . . . a m n ) A_{n*m} \begin{pmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ ... & ... & ...& ....\\ a_{m1} & a_{m2} & ...& a_{mn}\end{pmatrix} 转置为 A_{n*m}^T \begin{pmatrix} a_{11} & a_{21} & ...& a_{m1}\\ a_{12} & a_{22} & ...& a_{m2}\\ ... & ... & ...& ....\\ a_{1n} & a_{2n} & ...& a_{mn}\end{pmatrix} Anm a11a21...am1a12a22...am2............a1na2n....amn 转置为AnmT a11a12...a1na21a22...a2n............am1am2....amn

例如:矩阵 B = ( 1 2 3 4 5 6 ) B = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\end{pmatrix} B=(142536)的转置矩阵就是 B T = ( 1 4 2 5 3 6 ) B^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6\end{pmatrix} BT= 123456

反对称矩阵

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

方阵的行列式

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

伴随矩阵

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
根据行列式和矩阵乘法的公式刚好得出 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE

可逆矩阵(或称非奇异矩阵)

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
结合伴随矩阵的公式
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

  1. 根据 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE
  2. 结合行列式公式 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
  3. 得出 ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ |A||A*|=|A| A∣∣A=A
  4. 得出 ∣ A ∗ ∣ = 1 |A^*|=1 A=1
  5. 所以 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\cfrac{1}{|A|} A1=A1

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

共轭矩阵
  1. a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
  2. 共轭复数,两个实部相等,虚部互为相反数的复数,即 a-bi

举例:线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

分块矩阵

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

上述指将矩阵按行或者列分块线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

分块矩阵的其它性质

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

利用初等变化转为对角矩阵,方便计算

克拉默法则证明

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵

  1. 把方程组写成矩阵方程 Ax = b, 这里 A = ( a i j ) n ∗ n A=(a_{ij})_{n*n} A=(aij)nn为 n 阶矩阵
  2. 因 |A| ≠ 0,故 A − 1 A^{-1} A1存在。令 x = A − 1 b ⇒ A x = A A − 1 b x=A^{-1}b \Rightarrow Ax=AA^{-1}b x=A1bAx=AA1b,表明 x = A − 1 b x=A^{-1}b x=A1b是方程组的解向量。
  3. 由于逆矩阵公式 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\cfrac{1}{|A|}A^* A1=A1A,有 x = 1 ∣ A ∣ A ∗ b x=\cfrac{1}{|A|}A^*b x=A1Ab
  4. 线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
  5. x j = 1 ∣ A ∣ ( b 1 A 1 j + b 2 A 2 j + . . . + b n A n j ) x_j=\cfrac{1}{|A|}(b_1A_{1j} + b_2A_{2j}+...+b_nA_{nj}) xj=A1(b1A1j+b2A2j+...+bnAnj)
  6. x j = 1 ∣ A ∣ ∣ A j ∣ ( j = 1 , 2 , 3 , . . . n ) x_j=\cfrac{1}{|A|}|A_j| (j=1,2,3,...n) xj=A1Aj(j=1,2,3,...n)

分块矩阵乘法证明

线性代数(二) 矩阵及其运算,# 数学基础,线性代数,矩阵
我们通过验证分块矩阵乘法得到的元素与通用乘法得到元素是否一致,来证明分块乘法的可靠性,以 c 32 c_{32} c32为例:
c 32 = ( a 31 a 32 a 33 ) ( b 12 b 22 b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} &a_{33} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \\b_{32} \end{pmatrix} c32=(a31a32a33) b12b22b32
与他对应是 C 11 = A 11 B 11 + A 12 B 21 C_{11}=A_{11}B_{11}+A_{12}B_{21} C11=A11B11+A12B21中的 c 32 c_{32} c32
c 32 = ( a 31 a 32 ) ( b 12 b 22 ) + ( a 33 ) ( b 32 ) c_{32}= \begin{pmatrix} a_{31} & a_{32} \end{pmatrix}\begin{pmatrix} b_{12} \\b_{22} \end{pmatrix} + \begin{pmatrix} a_{33} \end{pmatrix} \begin{pmatrix} b_{32} \end{pmatrix} c32=(a31a32)(b12b22)+(a33)(b32)

主要参考

《矩阵的转置》
《克拉默法则》
《共轭矩阵》
《分块矩阵的初等变换(3)行列式不变吗?》
《矩阵分块乘法的原理是怎么样的?》
《线性代数知识汇总》文章来源地址https://www.toymoban.com/news/detail-634266.html

到了这里,关于线性代数(二) 矩阵及其运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数第二章矩阵及其运算详解

    一.线性方程组和矩阵 1.概念 如图所示,该矩阵称为 m行n列矩阵 若行数和列数都等于n,则该矩阵称为 n阶方阵 两个矩阵的行数相等,列数也相等,就称它们为 同型矩阵 若A=(aij)和B=(bij)是同型矩阵,且aij=bij(i=1,2,...,m;j=1,2,...,n),则称 矩阵A与矩阵B相等 ,记作 A=B 2.特殊

    2024年01月25日
    浏览(53)
  • 线性代数中涉及到的matlab命令-第二章:矩阵及其运算

    目录 1,矩阵定义 2,矩阵的运算 3,方阵的行列式和伴随矩阵  4,矩阵的逆  5,克莱默法则  6,矩阵分块  矩阵与行列式的区别: (1)形式上行列式是数表加两个竖线,矩阵是数表加大括号或中括号; (2)行列式可计算得到一个值,矩阵不能; (3)两个行列式相加与两

    2024年02月08日
    浏览(51)
  • 【课后习题】 线性代数第六版第二章 矩阵及其运算 习题二

    习题二 1. 计算下列乘积: (1) ( 4 3 1 1 − 2 3 5 7 0 ) ( 7 2 1 ) left(begin{array}{rrr}4 3 1 \\\\ 1 -2 3 \\\\ 5 7 0end{array}right)left(begin{array}{l}7 \\\\ 2 \\\\ 1end{array}right) ⎝ ⎛ ​ 4 1 5 ​ 3 − 2 7 ​ 1 3 0 ​ ⎠ ⎞ ​ ⎝ ⎛ ​ 7 2 1 ​ ⎠ ⎞ ​ ; (2) ( 1 , 2 , 3 ) ( 3 2 1 ) (1,2,3)left(begin{array}{l}3 \\\\ 2 \\\\ 1end{ar

    2024年02月05日
    浏览(47)
  • 线性代数 | 机器学习数学基础

    前言 线性代数 (linear algebra)是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 本文主要介绍 机器学习 中所用到的线性代数 核心基础概念 ,供读者学习阶段查漏补缺或是 快速学习参考 。 线性代数

    2024年01月21日
    浏览(69)
  • 线性代数与线性分析:数学基础与实际应用

    线性代数是数学的一个分支,主要研究的是线性方程组和线性空间。线性方程组是指形式为 ax+by=c 的方程组,其中 a,b,c 是已知数。线性空间是指一个向量空间,其中任何两个向量之间的线性组合都还是该空间中的向量。线性分析则是数学分析的一个分支,主要研究的是函数的

    2024年04月25日
    浏览(36)
  • 机器学习的数学基础:从线性代数到梯度下降

    机器学习是人工智能的一个重要分支,它涉及到计算机程序自动化地学习或者预测事物的行为。机器学习的核心是算法,算法需要数学来支持。在本文中,我们将从线性代数到梯度下降的数学基础来讨论机器学习算法的核心。 机器学习的数学基础包括线性代数、微积分、概率

    2024年02月21日
    浏览(47)
  • 深度学习的数学基础:从线性代数到随机过程

    深度学习是人工智能领域的一个重要分支,它主要通过模拟人类大脑中的神经网络来进行数据处理和学习。深度学习的核心技术是神经网络,神经网络由多个节点组成,这些节点之间有权重和偏置的连接。通过对这些节点进行训练,我们可以使神经网络具有学习和推理的能力

    2024年03月18日
    浏览(92)
  • 自动编码器的数学基础:概率论与线性代数

    自动编码器(Autoencoders)是一种深度学习模型,它通过学习压缩输入数据的低维表示,然后再将其重新解码为原始数据形式。自动编码器的主要目的是学习数据的特征表示,从而可以用于降维、生成新数据、数据压缩等应用。在这篇文章中,我们将讨论自动编码器的数学基础,

    2024年02月20日
    浏览(48)
  • 人工智能中数学基础:线性代数,解析几何和微积分

    在人工智能领域,线性代数、解析几何和微积分是最基础的数学知识。这些数学知识不仅在人工智能领域中被广泛应用,也是其他领域的重要基础。本文将介绍人工智能中的线性代数、解析几何和微积分的基础知识和应用。

    2024年02月16日
    浏览(51)
  • 计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

    目录 1. 中值定理 2. 梯度和散度 方向导数和梯度 通量与散度 3. 泰勒公式是为了解决什么问题的? 4. 矩阵的秩是什么,矩阵的秩物理意义? 矩阵的秩 矩阵秩的物理意义 5. 特征值和特征向量的概念 5.1 传统方法 例题 5.2 雅可比迭代法 6. 什么是线性相关以及线性相关的性质?

    2024年02月16日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包