Python实战之使用Python进行数据挖掘详解

这篇具有很好参考价值的文章主要介绍了Python实战之使用Python进行数据挖掘详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python实战之使用Python进行数据挖掘详解,python,数据挖掘,开发语言


一、Python数据挖掘

1.1 数据挖掘是什么?

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过算法,找出其中的规律、知识、信息的过程。Python作为一门广泛应用的编程语言,拥有丰富的数据挖掘库,使得数据挖掘变得更加容易。

1.2 Python的优势

为什么我们要选择Python来进行数据挖掘呢?以下几点原因可能解答你的疑惑:

  • 语法简洁,易学易用

  • 丰富的数据挖掘库和工具

  • 跨平台性,可在多种操作系统中运行

  • 社区活跃,庞大的用户基础

二、Python数据挖掘的基本流程📚

接下来,我们将通过一个实际案例来揭示Python数据挖掘的基本流程。假设我们手头有一份销售数据,需要分析哪些产品最受欢迎,以便调整经营策略。

2.1 数据收集

首先,我们需要从各个渠道收集销售数据。在这个案例中,我们可以从数据库、API接口、Web爬虫等途径获取数据。这里我们使用pandas库来读取一个CSV文件中的数据。

import pandas as pd

# 读取CSV文件
data = pd.read_csv("sales_data.csv")

文件内容形如:

日期,产品,销售额,销售量
2022-01-01,产品A,1000,10
2022-01-02,产品B,2000,20
2022-01-03,产品C,3000,30
2022-01-04,产品A,4000,40
2022-01-05,产品B,5000,50
2022-01-06,产品D,6000,60
2022-01-07,产品A,7000,70
2022-01-08,产品C,8000,80
2022-01-09,产品B,9000,90
2022-01-10,产品A,10000,100

2.2 数据预处理

收集到的数据很可能存在缺失值、重复值、异常值等问题,需要进行预处理。这里我们用pandas进行数据清洗。

# 去除重复值
data = data.drop_duplicates()

# 填补缺失值
data = data.fillna(method="ffill")

# 查找异常值并处理
data = data[data["销售额"] > 0]

2.3 数据分析

我们要根据业务需求进行数据分析。例如,我们可以分析不同产品的销售额、销售量等。这里我们使用pandas和matplotlib库进行数据分析和可视化。

import matplotlib.pyplot as plt

# 按产品统计销售额
product_sales = data.groupby("产品")["销售额"].sum()

# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额统计")
plt.show()

2.4 结果呈现

最后,我们将分析结果以表格、图表等形式呈现给决策者。这里我们使用pandas和matplotlib生成一个销售额排名的表格和柱状图。

# 排序
product_sales = product_sales.sort_values(ascending=False)

# 输出销售额排名
print(product_sales)

# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额排名")
plt.show()

三、Python数据挖掘实战:豆瓣电影评分分析🎬

3.1 项目背景

假如我们是一家电影制作公司,想要了解近年来观众喜欢的电影类型和特点,以便制定新电影的发展策略。我们将通过分析豆瓣电影评分数据,提取有价值的信息。

3.2 数据获取

我们使用Python的requests库和BeautifulSoup库爬取豆瓣电影榜单页面,抓取电影名称、类型、评分等信息。

import requests
from bs4 import BeautifulSoup

url = "https://movie.douban.com/top250"
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')

movie_list = []
for item in soup.find_all('div', class_='item'):
    title = item.find('span', class_='title').text
    genres = item.find('span', class_='genre').text.strip()
    rating = float(item.find('span', class_='rating_num').text)
    movie_list.append({'title': title, 'genres': genres, 'rating': rating})

movies_df = pd.DataFrame(movie_list)

3.3 数据预处理

这里我们需要对数据进行简单的预处理,例如拆分电影类型字段,使得每个类型单独成列。

# 拆分电影类型字段
genres_df = movies_df['genres'].str.get_dummies(sep='/').add_prefix('genre_')
movies_df = pd.concat([movies_df, genres_df], axis=1)

3.4 数据分析

我们可以分析不同类型电影的平均评分、数量等,找出观众喜欢的电影类型。这里我们使用pandas和matplotlib库进行数据分析和可视化。

# 计算各类型电影的数量
genre_counts = genres_df.sum().sort_values(ascending=False)

# 绘制饼图
plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%')
plt.title("电影类型比例")
plt.show()

# 计算各类型电影的平均评分
genre_ratings = movies_df.groupby('genres')['rating'].mean().sort_values(ascending=False)

# 绘制柱状图
plt.bar(genre_ratings.index, genre_ratings.values)
plt.xlabel("类型")
plt.ylabel("平均评分")
plt.title("各类型电影平均评分")
plt.xticks(rotation=90)
plt.show()

3.5 结果呈现

根据分析结果,我们可以看出观众喜欢的电影类型,并制定相应的发展策略。例如,选择高评分的类型制作新电影,或者研究具有一定特点的电影,提高影片的吸引力。

四、技术总结

通过上述案例,我们了解了Python在数据挖掘领域的强大能力,探索了如何从海量数据中找到隐藏的价值。希望这篇文章能给你在数据挖掘之路上带来启发。文章来源地址https://www.toymoban.com/news/detail-634407.html

到了这里,关于Python实战之使用Python进行数据挖掘详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据图书推荐:Python数据分析与挖掘实战(第2版)

    《Python数据分析与挖掘实战(第2版)》的配套学习视频,课程内容共分为基础篇(第1~5章)和实战篇(第6~11章)。      基础篇内容包括数据挖掘的概述、基本流程、常用工具、开发环境,Python数据挖掘的编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;

    2024年02月02日
    浏览(44)
  • Python商业数据挖掘实战——爬取网页并将其转为Markdown

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家 :https://www.captainbed.cn/z ChatGPT体验地址 在信息爆炸的时代,互联网上的海量文字信息如同无尽的沙滩。然而,其中真正有价值的信息往往埋在各种网页中,需要经过筛选和整理才能被有

    2024年02月02日
    浏览(65)
  • 【数据挖掘】使用 LSTM 进行时间和序列预测

            每天,人类在执行诸如过马路之类的任务时都会做出被动预测,他们估计汽车的速度和与汽车的距离,或者通过猜测球的速度并相应地定位手来接球。这些技能是通过经验和实践获得的。然而,由于涉及众多变量,预测天气或经济等复杂现象可能很困难。在这种情

    2024年02月15日
    浏览(42)
  • python数据分析与挖掘实战(商品零售购物篮分析)

            购物篮分析是商业领域最前沿、最具挑战性的问题之一,也是许多企业重点研究的问题。购物篮分析是通过发现顾客在一次购买行为中放入购物篮中不同商品之间的关联,研究顾客的购买行为,从而辅助零售企业制定营销策略的一种数据分析方法。        本篇文章

    2024年02月06日
    浏览(56)
  • Python数据分析与挖掘实战期末考复习(抱佛脚啦)

    期末三天赛高考我真的会谢,三天学完数据挖掘……真的很极限了的。 课本是那本 绿色的Python数据分析与挖掘实战(第2版), 作者张良均 … 图片来自老师给的ppt,以下内容是我自己总结的,自己复习用,覆盖了老师给画的重点考点,八九不离十,期末考抱佛脚的可以看看

    2024年02月08日
    浏览(41)
  • 【数据挖掘】使用 Python 分析公共数据【01/10】

            本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解,发现乍一看可能不那么明显的信息。特别是,本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。         要继续操作,您需

    2024年02月12日
    浏览(47)
  • 利用python对b站某GPT-4解说视频的近万条弹幕进行爬取、数据挖掘、数据分析、弹幕数量预测及情绪分类

             目录 一、利用Python爬取弹幕  二、利用几行代码直接生成词云 三、将弹幕属性和内容放入mysql当中  四、分析弹幕在视频各节点的数量 1、分析视频各个片段出现的弹幕数量 2、分析视频各大章节出现的弹幕数量 3.分析视频各小节出现的弹幕数量 五、分析弹幕数

    2024年02月11日
    浏览(39)
  • 利用weka进行数据挖掘——基于Apriori算法的关联规则挖掘实例

    首先,如果不熟悉weka的使用的话,可以从我的git仓库里面拉取一下weka的相关教程,仓库里面还有包含此次实例的所有资源 我们可以在weka的官网上下载weka软件:weka官网 如果下载速度慢的话也可以直接从我的git仓库里面拉取这个软件,软件是win64位的weka-3-8-6 然后找到对应版

    2024年02月06日
    浏览(49)
  • 【数据挖掘从入门到实战】——专栏导读

    目录 1、专栏大纲 🐋基础部分 🐋实战部分 🐋竞赛部分 2、代码附录 数据挖掘专栏,包含基本的 数据挖掘算法分析和实战,数据挖掘竞赛干货分享 等。数据挖掘是从大规模数据集中发现隐藏模式、关联和知识的过程。它结合了统计学、人工智能和数据库系统等领域的技术和

    2024年02月13日
    浏览(40)
  • 【数据挖掘与人工智能可视化分析】可视化分析:如何通过可视化技术进行数据挖掘和发现

    作者:禅与计算机程序设计艺术 数据挖掘(Data Mining)和人工智能(Artificial Intelligence,AI)已经成为当今社会热点话题。这两者之间的结合也带来了很多挑战。作为数据科学家、机器学习工程师、深度学习研究员等,掌握了数据的获取、清洗、处理、建模、应用这些技术的前提下,

    2024年02月07日
    浏览(74)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包