nlp入门(三)基于贝叶斯算法的拼写错误检测器

这篇具有很好参考价值的文章主要介绍了nlp入门(三)基于贝叶斯算法的拼写错误检测器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

源码请到:自然语言处理练习: 学习自然语言处理时候写的一些代码 (gitee.com)

数据来源:norvig.com/big.txt

贝叶斯原理可看这里:机器学习算法学习笔记 - 过客匆匆,沉沉浮浮 - 博客园 (cnblogs.com)

一、数据预处理

将输入的数据全部变为小写方便后续处理

def words(text):
    return re.findall('[a-z]+', text.lower())

二、根据语料库统计不同单词出现的词频

单词字典每个单词词频默认为1,因为如果单词字典默认值为为0,那么出现了语料库中没有的单词,就会默认概率为0,导致新的单词无法被识别

def train(features):
    model = collections.defaultdict(lambda: 1)  # 如果默认为0则出现语料库中没有的新词会不识别,所以默认为1
    for f in features:
        model[f] += 1
    return model

三、打开语料库与构建字母表

NWORDS = train(words(open('data/big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'

四、返回编辑距离为1的单词

单词a经过n次修改可以得到新的单词b,那我们叫b为a的编辑距离为1的单词,下面函数就返回编辑距离为1的单词

# 返回编辑距离为1的单词
def editsl(word):
    n = len(word)
    return set([word[0:i] + word[i + 1:] for i in range(n)] +  # 字母打多了一个
               [word[0:i] + word[i + 1] + word[i] + word[i + 2:] for i in range(n - 1)] +  # 字母打反了一个
               [word[0:i] + c + word[i + 1:] for i in range(n) for c in alphabet] +  # 字母打错了一个
               [word[0:i] + c + word[i:] for i in range(n + 1) for c in alphabet])  # 字母打少了一个

五、返回编辑距离为2的单词

# 考虑编辑距离为2的单词
def known_edits2(word):
    return set(e2 for e1 in editsl(word) for e2 in editsl(e1) if e2 in NWORDS)

六、判断单词是否在语料库中

def known(words):
    return set(w for w in words if w in NWORDS)

七、纠正拼写错误的单词

优先考虑原单词a是否在语料库中,如果存在就返回原单词,不存在就考虑编辑距离为1的单词,返回使用频率最高的那个如果编辑距离为1的单词也不在语料库中,那么就考虑编辑距离为2的单词,同样,如果编辑距离为2的单词都不在语料库中,那么这可能是一个新的单词,直接返回单词本身

def correct(word):
    candidates = known([word]) or known(editsl(word)) or known_edits2(word) or [word]
    return max(candidates, key=lambda w: NWORDS[w])

八、测试结果

print(correct('appl'))
print(correct('appla'))
print(correct('learw'))
print(correct('tess'))
print(correct('morw'))

nlp入门(三)基于贝叶斯算法的拼写错误检测器

 文章来源地址https://www.toymoban.com/news/detail-634564.html

到了这里,关于nlp入门(三)基于贝叶斯算法的拼写错误检测器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包