【大数据】Flink 从入门到实践(一):初步介绍

这篇具有很好参考价值的文章主要介绍了【大数据】Flink 从入门到实践(一):初步介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Flink 从入门到实践:初步介绍

Apache Flink 是一个框架和分布式处理引擎,用于在 无边界有边界 数据流上进行 有状态 的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。

【大数据】Flink 从入门到实践(一):初步介绍,大数据,大数据,flink,分布式

1.架构

1.1 处理无界和有界数据

任何类型的数据都可以形成一种事件流。信用卡交易、传感器测量、机器日志、网站或移动应用程序上的用户交互记录,所有这些数据都形成一种流。

数据可以被作为 无界 或者 有界 流来处理。

  • 无界流:有定义流的开始,但没有定义流的结束。它们会无休止地产生数据。无界流的数据必须持续处理,即数据被摄取后需要立刻处理。我们不能等到所有数据都到达再处理,因为输入是无限的,在任何时候输入都不会完成。处理无界数据通常要求以特定顺序摄取事件,例如事件发生的顺序,以便能够推断结果的完整性。
  • 有界流:有定义流的开始,也有定义流的结束。有界流可以在摄取所有数据后再进行计算。有界流所有数据可以被排序,所以并不需要有序摄取。有界流处理通常被称为批处理

【大数据】Flink 从入门到实践(一):初步介绍,大数据,大数据,flink,分布式
Apache Flink 擅长处理无界和有界数据集。精确的时间控制和状态化使得 Flink 的运行时(runtime)能够运行任何处理无界流的应用。有界流则由一些专为固定大小数据集特殊设计的算法和数据结构进行内部处理,产生了出色的性能。

1.2 部署应用到任意地方

Apache Flink 是一个分布式系统,它需要计算资源来执行应用程序。Flink 集成了所有常见的集群资源管理器,例如 Hadoop YARNApache MesosKubernetes,但同时也可以作为独立集群运行。

Flink 被设计为能够很好地工作在上述每个资源管理器中,这是通过资源管理器特定(resource-manager-specific)的部署模式实现的。Flink 可以采用与当前资源管理器相适应的方式进行交互。

部署 Flink 应用程序时,Flink 会根据应用程序配置的并行性自动标识所需的资源,并从资源管理器请求这些资源。在发生故障的情况下,Flink 通过请求新资源来替换发生故障的容器。提交或控制应用程序的所有通信都是通过 REST 调用进行的,这可以简化 Flink 与各种环境中的集成。

1.3 运行任意规模应用

Flink 旨在任意规模上运行有状态流式应用。因此,应用程序被并行化为可能数千个任务,这些任务分布在集群中并发执行。所以应用程序能够充分利用无尽的 CPU、内存、磁盘和网络 IO。而且 Flink 很容易维护非常大的应用程序状态。其异步和增量的检查点算法对处理延迟产生最小的影响,同时保证精确一次状态的一致性。

Flink 用户报告了其生产环境中一些令人印象深刻的扩展性数字

  • 处理每天数万亿的事件
  • 应用维护几TB大小的状态
  • 应用在数千个内核上运行

1.4 利用内存性能

有状态的 Flink 程序针对本地状态访问进行了优化。任务的状态始终保留在内存中,如果状态大小超过可用内存,则会保存在能高效访问的磁盘数据结构中。任务通过访问本地(通常在内存中)状态来进行所有的计算,从而产生非常低的处理延迟。Flink 通过定期和异步地对本地状态进行持久化存储来保证故障场景下精确一次的状态一致性。

【大数据】Flink 从入门到实践(一):初步介绍,大数据,大数据,flink,分布式

2.应用

Apache Flink 是一个针对无界和有界数据流进行有状态计算的框架。Flink 自底向上在不同的抽象级别提供了多种 API,并且针对常见的使用场景开发了专用的扩展库。

2.1 流处理应用的基本组件

2.1.1 流

显而易见,(数据)流是流处理的基本要素。然而,流也拥有着多种特征。这些特征决定了流如何以及何时被处理。Flink 是一个能够处理任何类型数据流的强大处理框架。

  • 有界无界 的数据流:流可以是无界的;也可以是有界的,例如固定大小的数据集。Flink 在无界的数据流处理上拥有诸多功能强大的特性,同时也针对有界的数据流开发了专用的高效算子。
  • 实时历史记录 的数据流:所有的数据都是以流的方式产生,但用户通常会使用两种截然不同的方法处理数据。或是在数据生成时进行实时的处理;亦或是先将数据流持久化到存储系统中——例如文件系统或对象存储,然后再进行批处理。Flink 的应用能够同时支持处理实时以及历史记录数据流。
2.1.2 状态

只有在每一个单独的事件上进行转换操作的应用才不需要状态,换言之,每一个具有一定复杂度的流处理应用都是有状态的。任何运行基本业务逻辑的流处理应用都需要在一定时间内存储所接收的事件或中间结果,以供后续的某个时间点(例如收到下一个事件或者经过一段特定时间)进行访问并进行后续处理。
【大数据】Flink 从入门到实践(一):初步介绍,大数据,大数据,flink,分布式
应用状态是 Flink 中的一等公民,Flink 提供了许多状态管理相关的特性支持,其中包括:

  • 多种状态基础类型:Flink 为多种不同的数据结构提供了相对应的状态基础类型,例如原子值(value),列表(list)以及映射(map)。开发者可以基于处理函数对状态的访问方式,选择最高效、最适合的状态基础类型。
  • 插件化的 State Backend:State Backend 负责管理应用程序状态,并在需要的时候进行 checkpoint。Flink 支持多种 state backend,可以将状态存在内存或者 RocksDB。RocksDB 是一种高效的嵌入式、持久化键值存储引擎。Flink 也支持插件式的自定义 state backend 进行状态存储。
  • 精确一次语义:Flink 的 checkpoint 和故障恢复算法保证了故障发生后应用状态的一致性。因此,Flink 能够在应用程序发生故障时,对应用程序透明,不造成正确性的影响。
  • 超大数据量状态:Flink 能够利用其异步以及增量式的 checkpoint 算法,存储数 TB 级别的应用状态。
  • 可弹性伸缩的应用:Flink 能够通过在更多或更少的工作节点上对状态进行重新分布,支持有状态应用的分布式的横向伸缩。
2.1.3 时间

时间是流处理应用另一个重要的组成部分。因为事件总是在特定时间点发生,所以大多数的事件流都拥有事件本身所固有的时间语义。进一步而言,许多常见的流计算都基于时间语义,例如窗口聚合、会话计算、模式检测和基于时间的 join。流处理的一个重要方面是应用程序如何衡量时间,即区分事件时间(event-time)和处理时间(processing-time)。

Flink 提供了丰富的时间语义支持。

  • 事件时间模式:使用事件时间语义的流处理应用根据事件本身自带的时间戳进行结果的计算。因此,无论处理的是历史记录的事件还是实时的事件,事件时间模式的处理总能保证结果的准确性和一致性。
  • Watermark 支持:Flink 引入了 Watermark 的概念,用以衡量事件时间进展。Watermark 也是一种平衡处理延时和完整性的灵活机制。
  • 迟到数据处理:当以带有 Watermark 的事件时间模式处理数据流时,在计算完成之后仍会有相关数据到达。这样的事件被称为迟到事件。Flink 提供了多种处理迟到数据的选项,例如将这些数据重定向到旁路输出(side output)或者更新之前完成计算的结果。
  • 处理时间模式:除了事件时间模式,Flink 还支持处理时间语义。处理时间模式根据处理引擎的机器时钟触发计算,一般适用于有着严格的低延迟需求,并且能够容忍近似结果的流处理应用。

2.2 分层 API

Flink 根据抽象程度分层,提供了三种不同的 API。每一种 API 在简洁性和表达力上有着不同的侧重,并且针对不同的应用场景。

【大数据】Flink 从入门到实践(一):初步介绍,大数据,大数据,flink,分布式

2.2.1 ProcessFunction

ProcessFunction 是 Flink 所提供的最具表达力的接口。ProcessFunction 可以处理一或两条输入数据流中的单个事件或者归入一个特定窗口内的多个事件。它提供了对于时间和状态的细粒度控制。开发者可以在其中任意地修改状态,也能够注册定时器用以在未来的某一时刻触发回调函数。因此,你可以利用 ProcessFunction 实现许多有状态的事件驱动应用所需要的基于单个事件的复杂业务逻辑。

下面的代码示例展示了如何在 KeyedStream 上利用 KeyedProcessFunction 对标记为 START 和 END 的事件进行处理。当收到 START 事件时,处理函数会记录其时间戳,并且注册一个时长 4 4 4 小时的计时器。如果在计时器结束之前收到 END 事件,处理函数会计算其与上一个 START 事件的时间间隔,清空状态并将计算结果返回。否则,计时器结束,并清空状态。

/**
* Matches keyed START and END events and computes the difference between
* both elements' timestamps. The first String field is the key attribute,
* the second String attribute marks START and END events.
*/
public static class StartEndDuration
  extends KeyedProcessFunction<String, Tuple2<String, String>, Tuple2<String, Long>> {

  private ValueState<Long> startTime;
  
  @Override
  public void open(Configuration conf) {
    // obtain state handle
    startTime = getRuntimeContext()
      .getState(new ValueStateDescriptor<Long>("startTime", Long.class));
  }

  /** Called for each processed event. */
  @Override
  public void processElement(
      Tuple2<String, String> in,
      Context ctx,
      Collector<Tuple2<String, Long>> out) throws Exception {
  
      switch (in.f1) {
        case "START":
          // set the start time if we receive a start event.
          startTime.update(ctx.timestamp());
          // register a timer in four hours from the start event.
          ctx.timerService()
            .registerEventTimeTimer(ctx.timestamp() + 4 * 60 * 60 * 1000);
          break;
        case "END":
          // emit the duration between start and end event
          Long sTime = startTime.value();
          if (sTime != null) {
            out.collect(Tuple2.of(in.f0, ctx.timestamp() - sTime));
            // clear the state
            startTime.clear();
          }
        default:
          // do nothing
      }
  }

  /** Called when a timer fires. */
  @Override
  public void onTimer(
    long timestamp,
    OnTimerContext ctx,
    Collector<Tuple2<String, Long>> out) {

    // Timeout interval exceeded. Cleaning up the state.
    startTime.clear();
  }
}
2.2.2 DataStream API

DataStream API 为许多通用的流处理操作提供了处理原语。这些操作包括窗口、逐条记录的转换操作,在处理事件时进行外部数据库查询等。DataStream API 支持 Java 和 Scala 语言,预先定义了例如 map()reduce()aggregate() 等函数。你可以通过扩展实现预定义接口或使用 Java、Scala 的 lambda 表达式实现自定义的函数。

下面的代码示例展示了如何捕获会话时间范围内所有的点击流事件,并对每一次会话的点击量进行计数。

// a stream of website clicks
DataStream<Click> clicks = ...

DataStream<Tuple2<String, Long>> result = clicks
  // project clicks to userId and add a 1 for counting
  .map(
    // define function by implementing the MapFunction interface.
    new MapFunction<Click, Tuple2<String, Long>>() {
      @Override
      public Tuple2<String, Long> map(Click click) {
        return Tuple2.of(click.userId, 1L);
      }
    })
  // key by userId (field 0)
  .keyBy(0)
  // define session window with 30 minute gap
  .window(EventTimeSessionWindows.withGap(Time.minutes(30L)))
  // count clicks per session. Define function as lambda function.
  .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));
2.2.3 SQL & Table API

Flink 支持两种关系型的 API,Table API 和 SQL。这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。Table API 和 SQL 借助了 Apache Calcite 来进行查询的解析,校验以及优化。它们可以与 DataStream 和 DataSet API 无缝集成,并支持用户自定义的标量函数,聚合函数以及表值函数。

Flink 的关系型 API 旨在简化数据分析、数据流水线和 ETL 应用的定义。

下面的代码示例展示了如何使用 SQL 语句查询捕获会话时间范围内所有的点击流事件,并对每一次会话的点击量进行计数。此示例与上述 DataStream API 中的示例有着相同的逻辑。

SELECT userId, COUNT(*)
FROM clicks
GROUP BY SESSION(clicktime, INTERVAL '30' MINUTE), userId

2.3 库

Flink 具有数个适用于常见数据处理应用场景的扩展库。这些库通常嵌入在 API 中,且并不完全独立于其它 API。它们也因此可以受益于 API 的所有特性,并与其他库集成。

  • 复杂事件处理(CEP):模式检测是事件流处理中的一个非常常见的用例。Flink 的 CEP 库提供了 API,使用户能够以例如正则表达式或状态机的方式指定事件模式。CEP 库与 Flink 的 DataStream API 集成,以便在 DataStream 上评估模式。CEP 库的应用包括 网络入侵检测业务流程监控欺诈检测
  • DataSet API:DataSet API 是 Flink 用于批处理应用程序的核心 API。DataSet API 所提供的基础算子包括 mapreduce(outer) joinco-groupiterate 等。所有算子都有相应的算法和数据结构支持,对内存中的序列化数据进行操作。如果数据大小超过预留内存,则过量数据将存储到磁盘。Flink 的 DataSet API 的数据处理算法借鉴了传统数据库算法的实现,例如混合散列连接(hybrid hash-join)和外部归并排序(external merge-sort)。
  • Gelly:Gelly 是一个可扩展的图形处理和分析库。Gelly 是在 DataSet API 之上实现的,并与 DataSet API 集成。因此,它能够受益于其可扩展且健壮的操作符。Gelly 提供了内置算法 ,如 label propagationtriangle enumerationpage rank 算法,也提供了一个简化自定义图算法实现的 Graph API 。

3.运维

Apache Flink 是一个针对无界和有界数据流进行有状态计算的框架。由于许多流应用程序旨在以最短的停机时间连续运行,因此流处理器必须提供出色的故障恢复能力,以及在应用程序运行期间进行监控和维护的工具。

Apache Flink 非常注重流数据处理的可运维性。接下来,我们将详细介绍 Flink 的故障恢复机制,并介绍其管理和监控应用的功能。

3.1 7 × 24小时稳定运行

在分布式系统中,服务故障是常有的事,为了保证服务能够 7 ∗ 24 7*24 724 小时稳定运行,像 Flink 这样的流处理器故障恢复机制是必须要有的。显然这就意味着,它(这类流处理器)不仅要能在服务出现故障时候能够重启服务,而且还要当故障发生时,保证能够持久化服务内部各个组件的当前状态,只有这样才能保证在故障恢复时候,服务能够继续正常运行,好像故障就没有发生过一样。

Flink 通过几下多种机制维护应用可持续运行及其一致性:

  • 检查点的一致性:Flink 的故障恢复机制是通过建立分布式应用服务状态一致性检查点实现的,当有故障产生时,应用服务会重启后,再重新加载上一次成功备份的状态检查点信息。结合可重放的数据源,该特性可保证 精确一次(exactly-once) 的状态一致性。
  • 高效的检查点:如果一个应用要维护一个 TB 级的状态信息,对此应用的状态建立检查点服务的资源开销是很高的,为了减小因检查点服务对应用的延迟性(SLAs 服务等级协议)的影响,Flink 采用异步及增量的方式构建检查点服务。
  • 端到端的精确一次:Flink 为某些特定的存储支持了事务型输出的功能,及时在发生故障的情况下,也能够保证精确一次的输出。
  • 集成多种集群管理服务:Flink 已与多种集群管理服务紧密集成,如 Hadoop YARNMesos,以及 Kubernetes。当集群中某个流程任务失败后,一个新的流程服务会自动启动并替代它继续执行。
  • 内置高可用服务:Flink 内置了为解决单点故障问题的高可用性服务模块,此模块是基于 Apache ZooKeeper 技术实现的,Apache ZooKeeper 是一种可靠的、交互式的、分布式协调服务组件。

3.2 Flink 能够更方便地升级、迁移、暂停、恢复应用服务

驱动关键业务服务的流应用是经常需要维护的。比如需要修复系统漏洞,改进功能,或开发新功能。然而升级一个有状态的流应用并不是简单的事情,因为在我们为了升级一个改进后版本而简单停止当前流应用并重启时,我们还不能丢失掉当前流应用的所处于的状态信息。

而 Flink 的 Savepoint 服务就是为解决升级服务过程中记录流应用状态信息及其相关难题而产生的一种唯一的、强大的组件。一个 Savepoint,就是一个应用服务状态的一致性快照,因此其与 checkpoint 组件的很相似,但是与 checkpoint 相比,Savepoint 需要手动触发启动,而且当流应用服务停止时,它并不会自动删除。Savepoint 常被应用于启动一个已含有状态的流服务,并初始化其(备份时)状态。Savepoint 有以下特点:

  • 便于升级应用服务版本:Savepoint 常在应用版本升级时使用,当前应用的新版本更新升级时,可以根据上一个版本程序记录的 Savepoint 内的服务状态信息来重启服务。它也可能会使用更早的 Savepoint 还原点来重启服务,以便于修复由于有缺陷的程序版本导致的不正确的程序运行结果。
  • 方便集群服务移植:通过使用 Savepoint,流服务应用可以自由的在不同集群中迁移部署。
  • 方便 Flink 版本升级:通过使用 Savepoint,可以使应用服务在升级 Flink 时,更加安全便捷。
  • 增加应用并行服务的扩展性:Savepoint 也常在增加或减少应用服务集群的并行度时使用。
  • 便于 A/B 测试及假设分析场景对比结果:通过把同一应用在使用不同版本的应用程序,基于同一个 Savepoint 还原点启动服务时,可以测试对比 2 2 2 个或多个版本程序的性能及服务质量。
  • 暂停和恢复服务:一个应用服务可以在新建一个 Savepoint 后再停止服务,以便于后面任何时间点再根据这个实时刷新的 Savepoint 还原点进行恢复服务。
  • 归档服务:Savepoint 还提供还原点的归档服务,以便于用户能够指定时间点的 Savepoint 的服务数据进行重置应用服务的状态,进行恢复服务。

3.3 监控和控制应用服务

如其它应用服务一样,持续运行的流应用服务也需要监控及集成到一些基础设施资源管理服务中,例如一个组件的监控服务及日志服务等。监控服务有助于预测问题并提前做出反应,日志服务提供日志记录能够帮助追踪、调查、分析故障发生的根本原因。最后,便捷易用的访问控制应用服务运行的接口也是 Flink 的一个重要的亮点特征。

Flink 与许多常见的日志记录和监视服务集成得很好,并提供了一个 REST API 来控制应用服务和查询应用信息。具体表现如下:文章来源地址https://www.toymoban.com/news/detail-634609.html

  • Web UI 方式:Flink 提供了一个 Web UI 来观察、监视和调试正在运行的应用服务。并且还可以执行或取消组件或任务的执行。
  • 日志集成服务:Flink 实现了流行的 slf4j 日志接口,并与日志框架 log4j 或 logback 集成。
  • 指标服务:Flink 提供了一个复杂的度量系统来收集和报告系统和用户定义的度量指标信息。度量信息可以导出到多个报表组件服务,包括 JMX,Ganglia,Graphite,Prometheus,StatsD,Datadog 和 Slf4j。
  • 标准的 WEB REST API 接口服务:Flink 提供多种 REST API 接口,有提交新应用程序、获取正在运行的应用程序的 Savepoint 服务信息、取消应用服务等接口。REST API 还提供元数据信息和已采集的运行中或完成后的应用服务的指标信息。

到了这里,关于【大数据】Flink 从入门到实践(一):初步介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink与GoogleCloudBigtable:将数据存储在分布式列存储中

    作者:禅与计算机程序设计艺术 随着互联网和移动互联网的普及,海量的数据需要实时地被处理分析,而传统的关系型数据库已经无法满足需求。为了能够快速高效地对海量数据进行查询分析、数据采集、数据预处理等操作,分布式数据库应运而生。其中一种分布式数据库

    2024年02月12日
    浏览(37)
  • OceanBase X Flink 基于原生分布式数据库构建实时计算解决方案

    摘要:本文整理自 OceanBase 架构师周跃跃,在 Flink Forward Asia 2022 实时湖仓专场的分享。本篇内容主要分为四个部分: 分布式数据库 OceanBase 关键技术解读 生态对接以及典型应用场景 OceanBase X Flink 在游戏行业实践 未来展望 点击查看原文视频 演讲PPT 作为一款历经 12 年的纯自研

    2024年02月13日
    浏览(45)
  • 数据存储和分布式计算的实际应用:如何使用Spark和Flink进行数据处理和分析

    作为一名人工智能专家,程序员和软件架构师,我经常涉及到数据处理和分析。在当前大数据和云计算的时代,分布式计算已经成为了一个重要的技术方向。Spark和Flink是当前比较流行的分布式计算框架,它们提供了强大的分布式计算和数据分析功能,为数据处理和分析提供了

    2024年02月16日
    浏览(62)
  • 分布式内存计算Spark环境部署与分布式内存计算Flink环境部署

    目录 分布式内存计算Spark环境部署 1.  简介 2.  安装 2.1【node1执行】下载并解压 2.2【node1执行】修改配置文件名称 2.3【node1执行】修改配置文件,spark-env.sh 2.4 【node1执行】修改配置文件,slaves 2.5【node1执行】分发 2.6【node2、node3执行】设置软链接 2.7【node1执行】启动Spark集群

    2024年02月08日
    浏览(76)
  • CentOS7安装Flink1.17伪分布式

    拥有1台CentOS7 CentOS7安装好jdk,官方文档要求java 11,使用java 8也可以。可参考 CentOS7安装jdk8 下载安装包 ​ 创建软链接 添加如下环境变量 让环境变量立即生效 进入flink配置目录,查看flink的配置文件 配置flink-conf.yaml 找到如下配置项,并按照如下修改,其中node1为机器主机名

    2024年04月14日
    浏览(36)
  • 大数据学习之Flink,10分钟带你初步了解Flink

    目录 前摘 一、认识Flink的Logo​编辑 二、了解Flink的起源 三、了解Flink的发展 四、明白Flink的定位 五、Flink主要的应用场景 六、流式数据处理的发展和演变 1. 流处理和批处理 2. 传统事务处理 2.1传统事务处理架构​编辑 3. 有状态的流处理 4. Lambda 架构 5. 新一代流处理器 七、

    2024年02月20日
    浏览(47)
  • 如何使用Spark/Flink等分布式计算引擎做网络入侵检测

    ⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟 🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿 个人网站:https://jerry-jy.co/ 本篇博客是我在做 基于Spark/Flink大数据环境下网络入

    2024年02月11日
    浏览(52)
  • Apache SeaTunnel:新一代高性能、分布式、海量数据集成工具从入门到实践

    Apache SeaTunnel 原名 Waterdrop,在 2021 年 10 月更名为 SeaTunnel 并申请加入 Apache孵化器。目前 Apache SeaTunnel 已发布 40+个版本,并在大量企业生产实践中使用,包括 J.P.Morgan、字节跳动、Stey、中国移动、富士康、腾讯云、国双、中科大数据研究院、360、Shoppe、Bilibili、新浪、搜狗、唯

    2024年02月03日
    浏览(68)
  • 下一代大数据分布式存储技术Apache Ozone初步研究

    @ 目录 概述 定义 特性 架构 总体架构 写数据 读数据 部署 安装方式 安装 Docker启动 Docker-compose启动 企业预置型(On Premise)安装 实践 命令行接口 Ofs (Hadoop兼容) Recon API Apache Ozone 官网地址 https://ozone.apache.org/ 最新版本1.3.0 Apache Ozone 官网最新文档地址 https://ozone.apache.org/docs/1.3.0

    2023年04月25日
    浏览(66)
  • 【分布式】大模型分布式训练入门与实践 - 04

    【分布式】NCCL部署与测试 - 01 【分布式】入门级NCCL多机并行实践 - 02 【分布式】小白看Ring算法 - 03 【分布式】大模型分布式训练入门与实践 - 04 数据并行(Distributed Data Parallel)是一种用于加快深度学习模型训练速度的技术。在过去,训练大型模型往往受限于单卡训练的瓶颈

    2024年02月08日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包