使用Bert预训练模型处理序列推荐任务

这篇具有很好参考价值的文章主要介绍了使用Bert预训练模型处理序列推荐任务。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最近的工作有涉及该任务,整理一下思路以及代码细节。

流程

总体来说思路就是首先用预训练的bert模型,在训练集的序列上进行CLS任务。对序列内容(这里默认是token id的sequence)以0.3左右的概率进行随机mask,然后将相应sequence的attention mask(原来决定padding index)和label(也就是mask的ground truth)输入到bert model里面。

当然其中vocab.txt并不存在的token是需要add进去的,具体方法不再详述,网上例子很多,注意word embedding也需要初始化就行。

模型定义:
self.model = AutoModelForMaskedLM.from_pretrained('./bert')
模型的输入:
result = self.bert_model(tail_mask, attention_mask, labels)
得到模型训练的结果之后,要做一个选择:

(1)transformer的bert model可以输出要预测时间步的hidden state,可以选择取出对应的hidden state,其中需要在数据处理的时候记录下每个sequence的tail position,也就是要预测位置的idx。另外我认为既然要进行序列推荐,那么最后一个tail position的token表征一定是最重要的,所以需要对tail position的idx专门给个写死的mask,效果会好一些。然后与sequence中item的全集进行相似度的计算,再去算交叉熵loss。

bert_hidden = result.hidden_states[-1]
bert_seq_hidden = torch.zeros((self.args.batch_size, 312)).to(self.device)
for i in range(self.args.batch_size):
	bert_seq_hidden[i,:] = bert_hidden[i, tail_pos[i], :]
logits = torch.matmul(bert_seq_hidden, test_item_emb.transpose(0, 1))
main_loss = self.criterion(logits, targets)

(2)同时也可以result.loss直接数据mask prediction的loss,我理解这个loss面对的任务是我要求sequence中的各个token表征都要尽可能准确,都要考虑,(1)可能更加注重最后一个位置的标准的准确性。

然后在evaluate阶段,需要注意输入到模型的不再是tail_mask,而是仅仅mask掉tail token id的sequence,因为我们需要尽可能准确的序列信息,只需要保证要预测的存在mask就够了。

由于是推荐任务,而且bert得到的hidden state表征过于隐式,所以需要一定的个性化引导它进行训练。经过个人的实验也确实如此,而且结果相差很多。

以上就是我个人的总结经验,欢迎大家指点。文章来源地址https://www.toymoban.com/news/detail-634835.html

到了这里,关于使用Bert预训练模型处理序列推荐任务的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【NLP】1、BERT | 双向 transformer 预训练语言模型

    论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 出处:Google 在 BERT 之前的语言模型如 GPT 都是单向的模型,但 BERT 认为虽然单向(从左到右预测)预测任务符合语言模型的建模过程,但对一些语言理解任务不太友好,因为要理解一句话说的是什么意思的话

    2024年02月12日
    浏览(45)
  • NLP(六十七)BERT模型训练后动态量化(PTDQ)

      本文将会介绍BERT模型训练后动态量化(Post Training Dynamic Quantization,PTDQ)。 量化   在深度学习中,量化(Quantization)指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算。这么做的好处主要有如下几点: 更少的模型

    2024年02月09日
    浏览(45)
  • NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践

    本项目对3种常用的文本匹配的方法进行实现:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)。 文本匹配(Text Matching)是 NLP 下的一个分支,通常用于计算两个句子之间的相似程度,在推荐、推理等场景下都有着重要的作用。 举例来讲,今天我们有一堆评论数据,我们

    2024年02月12日
    浏览(38)
  • [oneAPI] 基于BERT预训练模型的英文文本蕴含任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 我们在Intel® DevCloud for oneAPI平台上构建了我们的实验环境,充分利用了其完全虚拟化的特性,使我们能够专注于模型的开发和优化,无需烦心底

    2024年02月11日
    浏览(35)
  • [oneAPI] 基于BERT预训练模型的命名体识别任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 在本次实验中,我们在Intel® DevCloud for oneAPI上搭建实验,借助完全虚拟化的环境,专注于模型开发与优化,无需关心底层配置。使用Intel® Opti

    2024年02月12日
    浏览(37)
  • [oneAPI] 基于BERT预训练模型的SQuAD问答任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 我们在Intel® DevCloud for oneAPI平台上构建了实验环境,充分发挥其完全虚拟化的优势。更具影响力的是,我们充分发挥了Intel® Optimization for PyTor

    2024年02月11日
    浏览(41)
  • [oneAPI] 基于BERT预训练模型的SWAG问答任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 在Intel® DevCloud for oneAPI平台上,我们搭建了实验环境,充分发挥其完全虚拟化的优势,使我们能够专注于模型开发和优化,无需过多关心底层配

    2024年02月11日
    浏览(36)
  • 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析?

    作者:禅与计算机程序设计艺术 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析,成为一个重要研究课题。近年来,随着计算能力的提升和硬件性能的增强,大规模

    2024年02月09日
    浏览(70)
  • BERT数据处理,模型,预训练

    首先读取文本,每个文本必须包含两个以上句子(为了第二个预训练任务:判断两个句子,是否连续)。paragraphs 其中一部分结果如下所示 上述已经将数据处理完,最后看一下处理后的例子: 随后就是把处理好的数据,送入bert中。在 BERTEncoder 中,执行如下代码: 将编码完后

    2024年02月13日
    浏览(48)
  • 中文自然语言处理(NLP)的命名实体识别(NER)任务常见序列标注方法

    中文NLP的NER任务中的数据集序列标注方法,主要有以下几种常用的标注方案: BIO标注法(Begin-Inside-Outside) : B (Begin)表示实体的开始部分。 I (Inside)表示实体的中间部分。 O (Outside)表示非实体部分。 例如,“北京是中国的首都”,如果要标注“北京”为地名,会标

    2024年01月23日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包