【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码)

这篇具有很好参考价值的文章主要介绍了【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码),Linux,网络,udp,服务器

🐛预备知识

🦋理解源IP地址和目的IP地址

源IP地址(Source IP Address):

源IP地址是数据包发送方(或数据流出发点)的唯一标识符。它用于在互联网或本地网络中定位发送数据包的设备或主机。源IP地址是数据包的出发点,即数据从这个地址开始传送,向目的IP地址指示的设备发送。
在TCP/IP协议中,源IP地址通常由发送方的操作系统或网络栈分配,并在数据包的IP首部中进行标记。

目的IP地址(Destination IP Address):

目的IP地址是数据包的接收方(或数据流的目标点)的唯一标识符。它用于在互联网或本地网络中定位接收数据包的设备或主机。目的IP地址是数据包的终点,即数据传输的目标地址,数据包应该传输到这个地址。
在TCP/IP协议中,目的IP地址通常由应用程序或网络栈设置,并在数据包的IP首部中进行标记。
这两个地址在数据包传输过程中起着非常重要的作用,确保数据从源设备正确地传递到目标设备,实现网络通信。IP地址是一个32位的二进制数,通常用点分十进制表示(例如,192.168.0.1),其中前24位表示网络地址,后8位表示主机地址。

🐌认识端口号

端口号(port)是传输层协议的内容.
端口号是一个2字节16位的整数;
端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理;
IP地址 + 端口号能够标识网络上的某一台主机的某一个进程;
一个端口号只能被一个进程占用.

🐞 理解 “端口号” 和 “进程ID”

  • 端口号(Port Number)和进程ID(Process ID)是在计算机网络和操作系统中用于不同目的的标识符。

端口号:

端口号是在计算机网络中用于标识特定进程或服务的数字。 它是一个16位的无符号整数,取值范围是0到65535。
在TCP/IP网络中,每个传输控制协议(TCP)和用户数据报协议(UDP)的通信端点都与一个端口号相关联。 这样,计算机上的不同进程或服务可以通过不同的端口号进行通信,从而实现多个应用程序的并发运行。
例如,HTTP服务通常使用端口号80,HTTPS使用端口号443,SMTP使用端口号25等。

进程ID:

进程ID是操作系统中用于标识运行中进程(或线程)的唯一标识符。 它是一个非负整数,通常由操作系统在进程创建时分配。
在多任务操作系统中,每个运行中的进程都有一个唯一的进程ID,操作系统通过进程ID来跟踪和管理不同的进程。
进程ID的范围通常由操作系统定义,可以是一个较小的数值范围,也可以是一个较大的范围。

区别:

端口号是在计算机网络中用于标识不同进程或服务的通信端点,用于实现多个应用程序的并发运行。 进程ID是操作系统中用于标识运行中进程的唯一标识符,用于跟踪和管理不同的进程。
端口号是在网络通信中使用的,而进程ID是在操作系统层级使用的。
端口号是一个16位的数字,进程ID是一个非负整数。

🐜简单认识TCP协议

传输层协议
有连接
可靠传输
面向字节流

🦟简单认识UDP协议

传输层协议
无连接
不可靠传输
面向数据报

🦗 什么是网络字节序

网络字节序是一种在计算机网络中使用的固定字节顺序,用于在不同计算机体系结构和操作系统之间传递数据。 在计算机内部,不同的体系结构(例如x86、ARM、SPARC等)和操作系统(例如Windows、Linux、iOS等)可能使用不同的字节顺序,这可能导致在网络通信中出现问题。

为了解决这个问题,网络通信中使用了统一的字节顺序,即网络字节序。 网络字节序采用大端字节序(Big-Endian)表示法,其中较高的字节位于较低的内存地址上,较低的字节位于较高的内存地址上。

举例说明:

假设一个16位整数0x1234(十进制为4660)在内存中存储为两个字节:0x12和0x34。

在大端字节序中,较高的字节(0x12)存储在较低的内存地址,较低的字节(0x34)存储在较高的内存地址。 即内存地址由高到低,数据依次为0x12 0x34。
在小端字节序中,较低的字节(0x34)存储在较低的内存地址,较高的字节(0x12)存储在较高的内存地址。 即内存地址由高到低,数据依次为0x34 0x12。

在网络通信中,发送方将数据转换为网络字节序后发送,接收方收到数据后将其转换为本地字节序进行处理,以保证在不同计算机体系结构和操作系统之间正确地传递数据。 常用的网络编程库(例如Socket编程)通常会自动处理字节序的转换。

🕷相关函数端口介绍

🕸 socket相关API介绍

  • man手册
    【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码),Linux,网络,udp,服务器

Socket(套接字)是一种用于网络通信的编程接口,它允许计算机之间通过网络传输数据。 在Socket编程中,我们可以使用一组API函数来创建、绑定、连接、发送和接收数据等操作。

  • 以下是常用的Socket API函数及其参数:
  1. socket()函数:
  • 描述:创建一个新的套接字。
  • 参数:int socket(int domain, int type, int protocol)
  • domain:套接字的地址族,常用的有AF_INET(IPv4)和AF_INET6(IPv6)。
  • type:套接字的类型,常用的有SOCK_STREAM(流式套接字,用于TCP)和SOCK_DGRAM(数据报套接字,用于UDP)。
  • protocol:使用的协议,通常为0(自动选择与type相关的默认协议)。
  1. bind()函数:
  • 描述:将套接字绑定到一个特定的地址和端口。
  • 参数:int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
  • sockfd:套接字描述符。
  • addr:指向要绑定的地址结构的指针,通常是struct sockaddr_in(IPv4)或struct sockaddr_in6(IPv6)。
  • addrlen:地址结构的长度。
  1. connect()函数:
  • 描述:建立与远程服务器的连接。
  • 参数:int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
  • sockfd:套接字描述符。
  • addr:指向目标服务器地址的指针,通常是struct sockaddr_in(IPv4)或struct sockaddr_in6(IPv6)。
  • addrlen:地址结构的长度。
  1. listen()函数:
  • 描述:将套接字设置为监听模式,准备接受连接请求。
  • 参数:int listen(int sockfd, int backlog)
  • sockfd:套接字描述符。
  • backlog:请求队列的最大长度,即等待接受连接的连接数。
  1. accept()函数:
  • 描述:接受连接请求,创建一个新的套接字用于与客户端通信。
  • 参数:int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen)
  • sockfd:监听套接字描述符。
  • addr:指向客户端地址的指针,用于存储客户端的信息。
  • addrlen:地址结构的长度。
  1. send()函数:
  • 描述:发送数据。
  • 参数:ssize_t send(int sockfd, const void *buf, size_t len, int flags)
  • sockfd:套接字描述符。
  • buf:要发送的数据缓冲区。
  • len:要发送的数据长度。
  • flags:发送标志,通常为0。
  1. recv()函数:
  • 描述:接收数据。
  • 参数:ssize_t recv(int sockfd, void *buf, size_t len, int flags)
  • sockfd:套接字描述符。
  • buf:接收数据的缓冲区。
  • len:要接收的数据长度。
  • flags:接收标志,通常为0。
  1. close()函数:
  • 描述:关闭套接字。
  • 参数:int close(int sockfd)
  • sockfd:套接字描述符。

使用Socket API时,通常的流程是创建一个套接字、绑定到一个地址和端口(可选)、监听连接请求(可选)、接受连接请求、发送和接收数据,最后关闭套接字。 服务器端和客户端使用不同的套接字操作,服务器端用于监听连接请求和处理客户端请求,而客户端用于建立连接和发送请求给服务器端。

🦂sockaddr结构

sockaddr 是一个通用的套接字地址结构,在Socket编程中经常用于存储网络地址信息。由于不同的协议族(IPv4、IPv6等)具有不同的地址结构,因此 sockaddr 用作地址结构的基类,而实际使用时通常会使用具体的子结构 sockaddr_in(IPv4)或 sockaddr_in6(IPv6)。

struct sockaddr {
    sa_family_t sa_family;      // 地址族,通常为 AF_INET 或 AF_INET6
    char sa_data[14];           // 存放地址信息的缓冲区,不同协议族具有不同的结构
};

在实际使用时,通常会将 sockaddr 结构转换为适合当前协议族的具体地址结构。例如,在IPv4协议中,使用 sockaddr_in 结构,其定义如下:

struct sockaddr_in {
    sa_family_t sin_family;     // 地址族,固定为 AF_INET
    in_port_t sin_port;         // 16位端口号,使用网络字节序
    struct in_addr sin_addr;    // 32位IPv4地址,使用网络字节序
    char sin_zero[8];           // 不使用,填充字段
};

在IPv6协议中,使用 sockaddr_in6 结构,其定义如下:

struct sockaddr_in6 {
    sa_family_t sin6_family;     // 地址族,固定为 AF_INET6
    in_port_t sin6_port;         // 16位端口号,使用网络字节序
    uint32_t sin6_flowinfo;      // 流标识,通常为0
    struct in6_addr sin6_addr;   // 128位IPv6地址,使用网络字节序
    uint32_t sin6_scope_id;      // 接口范围标识
};

在使用 结构时,通常需要进行类型转换,将其转换为适用于当前协议族的地址结构,并根据需要填充具体的地址信息,然后传递给套接字相关的函数使用。

🐢 sockaddr_in结构

sockaddr_in 是用于存储IPv4地址的套接字地址结构,是在网络编程中非常常用的结构。它用于在IPv4协议族中表示网络地址和端口号。下面是 sockaddr_in 结构的定义:

struct sockaddr_in {
    sa_family_t sin_family;     // 地址族,固定为 AF_INET
    in_port_t sin_port;         // 16位端口号,使用网络字节序
    struct in_addr sin_addr;    // 32位IPv4地址,使用网络字节序
    char sin_zero[8];           // 不使用,填充字段
};

其中,各字段的含义如下:

sin_family:地址族,固定为 AF_INET,表示IPv4地址族。
sin_port:16位端口号,使用网络字节序,需要使用 htons 函数进行字节序转换。
sin_addr:32位IPv4地址,使用网络字节序,需要使用 inet_pton 函数将点分十进制形式的IPv4地址转换为网络字节序。
sin_zero:不使用,填充字段,通常设置为0。
使用 结构时,通常先将IPv4地址和端口号填充到该结构中,然后将其转换为通用的 sockaddr_insockaddr 结构,在套接字相关的函数中使用。

例如,在服务器端绑定一个IPv4地址和端口号,可以这样做:

#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>

int main() {
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0) {
        perror("socket");
        return -1;
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8080); // 将端口号转换为网络字节序
    inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr); // 将IPv4地址转换为网络字节序
    memset(server_addr.sin_zero, 0, sizeof(server_addr.sin_zero));

    if (bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
        perror("bind");
        close(sockfd);
        return -1;
    }

    // 其他操作...
    close(sockfd);
    return 0;
}

注意,在使用 sockaddr_in 结构时,需要包含 <netinet/in.h> 头文件,并且要进行网络字节序的转换。

🐍 简单的UDP网络程序

🦎log.hpp 日志文件

#pragma once

#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>

#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3

const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};

// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{
    assert(level >= DEBUG);
    assert(level <= FATAL);

    char *name = getenv("USER");

    char logInfo[1024];
    va_list ap; // ap -> char*
    va_start(ap, format);

    vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);

    va_end(ap); // ap = NULL


    FILE *out = (level == FATAL) ? stderr:stdout;

    fprintf(out, "%s | %u | %s | %s\n", \
        log_level[level], \
        (unsigned int)time(nullptr),\
        name == nullptr ? "unknow":name,\
        logInfo);

    // char *s = format;
    // while(s){
    //     case '%':
    //         if(*(s+1) == 'd')  int x = va_arg(ap, int);
    //     break;
    // }
}

🦖 udpClient.cc 客户端

#include <iostream>
#include <string>
#include <cstdlib>
#include <cassert>
#include <unistd.h>
#include <strings.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <pthread.h>

struct sockaddr_in server;

static void Usage(std::string name)
{
    std::cout << "Usage:\n\t" << name << " server_ip server_port" << std::endl;
}

void *recverAndPrint(void *args)
{
    while (true)
    {
        int sockfd = *(int *)args;
        char buffer[1024];
        struct sockaddr_in temp;
        socklen_t len = sizeof(temp);
        ssize_t s = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *)&temp, &len);
        if (s > 0)
        {
            buffer[s] = 0;
            std::cout << "server echo# " << buffer << std::endl;
        }
    }
}

// ./udpClient server_ip server_port
// 如果一个客户端要连接server必须知道server对应的ip和port
int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        Usage(argv[0]);
        exit(1);
    }
    // 1. 根据命令行,设置要访问的服务器IP
    std::string server_ip = argv[1];
    uint16_t server_port = atoi(argv[2]);

    // 2. 创建客户端
    // 2.1 创建socket
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    assert(sockfd > 0);

    // 2.2 client 需不需要bind??? 需要bind,但是不需要用户自己bind,而是os自动给你bind
    // 所谓的"不需要",指的是: 不需要用户自己bind端口信息!因为OS会自动给你绑定,你也最好这么做!
    // 如果我非要自己bind呢?可以!严重不推荐!
    // 所有的客户端软件 <-> 服务器 通信的时候,必须得有 client[ip:port] <-> server[ip:port]
    // 为什么呢??client很多,不能给客户端bind指定的port,port可能被别的client使用了,你的client就无法启动了
    // 那么server凭什么要bind呢??server提供的服务,必须被所有人知道!server不能随便改变!
    // 2.2 填写服务器对应的信息

    bzero(&server, sizeof server);
    server.sin_family = AF_INET;
    server.sin_port = htons(server_port);
    server.sin_addr.s_addr = inet_addr(server_ip.c_str());

    pthread_t t;
    pthread_create(&t, nullptr, recverAndPrint, (void *)&sockfd);
    // 3. 通讯过程
    std::string buffer;
    while (true)
    {
        std::cerr << "Please Enter# ";
        std::getline(std::cin, buffer);
        // 发送消息给server
        sendto(sockfd, buffer.c_str(), buffer.size(), 0,
               (const struct sockaddr *)&server, sizeof(server)); // 首次调用sendto函数的时候,我们的client会自动bind自己的ip和port
    }

    close(sockfd);

    return 0;
}

🦕 udpServer.cc 服务器

#include <iostream>
#include <string>
#include <cstring>
#include <unistd.h>
#include <stdlib.h>
#include <ctype.h>
#include <unordered_map>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "log.hpp"
static void Usage(const std::string porc)
{
    std::cout << "Usage:\n\t" << porc << " port [ip]" << std::endl;
}

class udpServer
{
    public:
    udpServer(int port, std::string ip = "") : port_((uint16_t)port), ip_(ip), sockfd_(-1)
    {
    }
    ~udpServer()
    {
    }

    void init()//初始化函数
    {
        //1.创建套接字
        sockfd_=socket(AF_INET,SOCK_DGRAM,0);
        //  参数1:套接字的协议族     `AF_INET`: IPv4协议族,用于Internet地址。
        //参数2:套接字类型    `SOCK_DGRAM`: 面向消息的套接字,用于不可靠的、固定长度的数据传输(如UDP)。
        //参数3:套接字的协议    0,让系统自动选择合适的协议。
        if(sockfd_<0) //创建失败 打印日志信息
        {
              logMessage(FATAL, "socket:%s:%d", strerror(errno), sockfd_);
            exit(1);
        }

        //到这说明 创建成功
         logMessage(DEBUG, "socket create success: %d", sockfd_);
         struct sockaddr_in local;  // local在哪里开辟的空间? 用户栈 -> 临时变量 -> 写入内核中
            bzero(&local, sizeof(local)); // memset
        // 填充协议家族,域
        local.sin_family = AF_INET;
        // 填充服务器对应的端口号信息,一定是会发给对方的,port_一定会到网络中
        local.sin_port = htons(port_);
        // 服务器都必须具有IP地址,"xx.yy.zz.aaa",字符串风格点分十进制 -> 4字节IP -> uint32_t ip
        // INADDR_ANY(0): 程序员不关心会bind到哪一个ip, 任意地址bind,强烈推荐的做法,所有服务器一般的做法
        // inet_addr: 指定填充确定的IP,特殊用途,或者测试时使用,除了做转化,还会自动给我们进行 h—>n
        local.sin_addr.s_addr = ip_.empty() ? htonl(INADDR_ANY) : inet_addr(ip_.c_str());
        // 2.2 bind 网络信息
        if (bind(sockfd_, (const struct sockaddr *)&local, sizeof(local)) == -1)
        {
            logMessage(FATAL, "bind: %s:%d", strerror(errno), sockfd_);
            exit(2);
        }
        logMessage(DEBUG, "socket bind success: %d", sockfd_);
        // done
    }

     void start()
    {
        // 服务器设计的时候,服务器都是死循环
        char inbuffer[1024];  //将来读取到的数据,都放在这里
        char outbuffer[1024]; //将来发送的数据,都放在这里
        while (true)
        {
            struct sockaddr_in peer;      //输出型参数
            socklen_t len = sizeof(peer); //输入输出型参数

            // demo2
            //  UDP无连接的
            //  对方给你发了消息,你想不想给对方回消息?要的!后面的两个参数是输出型参数
            ssize_t s = recvfrom(sockfd_, inbuffer, sizeof(inbuffer) - 1, 0,
                                 (struct sockaddr *)&peer, &len);
            if (s > 0)
            {
                inbuffer[s] = 0; //当做字符串
            }
            else if (s == -1)
            {
                logMessage(WARINING, "recvfrom: %s:%d", strerror(errno), sockfd_);
                continue;
            }
            // 读取成功的,除了读取到对方的数据,你还要读取到对方的网络地址[ip:port]
            std::string peerIp = inet_ntoa(peer.sin_addr);       //拿到了对方的IP
            uint32_t peerPort = ntohs(peer.sin_port); // 拿到了对方的port

            checkOnlineUser(peerIp, peerPort, peer); //如果存在,什么都不做,如果不存在,就添加

            // 打印出来客户端给服务器发送过来的消息
            logMessage(NOTICE, "[%s:%d]# %s", peerIp.c_str(), peerPort, inbuffer);

            // for(int i = 0; i < strlen(inbuffer); i++)
            // {
            //     if(isalpha(inbuffer[i]) && islower(inbuffer[i])) outbuffer[i] = toupper(inbuffer[i]);
            //     else outbuffer[i] = toupper(inbuffer[i]);
            // }
            messageRoute(peerIp, peerPort,inbuffer); //消息路由

            // 线程池!

            // sendto(sockfd_, outbuffer, strlen(outbuffer), 0, (struct sockaddr*)&peer, len);

            // demo1
            // logMessage(NOTICE, "server 提供 service 中....");
            // sleep(1);
        }
    }

    void checkOnlineUser(std::string &ip, uint32_t port, struct sockaddr_in &peer)
    {
        std::string key = ip;
        key += ":";
        key += std::to_string(port);
        auto iter = users.find(key);
        if(iter == users.end())
        {
            users.insert({key, peer});
        }
        else
        {
            // iter->first, iter->second->
            // do nothing
        }
    }

    void messageRoute(std::string ip, uint32_t port, std::string info)
    {

        std::string message = "[";
        message += ip;
        message += ":";
        message += std::to_string(port);
        message += "]# ";
        message += info;

        for(auto &user : users)
        {
            sendto(sockfd_, message.c_str(), message.size(), 0, (struct sockaddr*)&(user.second), sizeof(user.second));
        }
    }


    private:
    // 服务器必须得有端口号信息
    uint16_t port_;
    // 服务器必须得有ip地址
    std::string ip_;
    // 服务器的socket fd信息
    int sockfd_;
    // onlineuser
    std::unordered_map<std::string, struct sockaddr_in> users;

};
int main(int argc, char *argv[])
{
    if (argc != 2 && argc != 3) //反面:argc == 2 || argc == 3
    {
        Usage(argv[0]);
        exit(3);
    }
    uint16_t port = atoi(argv[1]);
    std::string ip;
    if (argc == 3)
    {
        ip = argv[2];
    }

    udpServer svr(port, ip);
    svr.init();
    svr.start();

    return 0;
}

🐙 makefile文件

.PHONY:all
all:udpClient udpServer

udpClient: UCPClient.cc
	g++ -o $@ $^ -std=c++11 -lpthread
udpServer:UDPServer.cc
	g++ -o $@ $^ -std=c++11

.PHONY:clean
clean:
	rm -f udpClient udpServer

运行:

【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码),Linux,网络,udp,服务器
设置对对应的端口号就行

【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码),Linux,网络,udp,服务器

🦑 🦐 🦞 🦀 🐡 🐠 🐟 🐬 🐳 🐋 🦈 🐊 🐅 🐆 🦓 🦍 🦧 🦣 🐘 🦛文章来源地址https://www.toymoban.com/news/detail-634935.html

到了这里,关于【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【网络编程】TCP流套接字编程(TCP实现回显服务器)

    Socket(既能给客户端使用,也能给服务器使用) 构造方法 基本方法: ServerSocket(只能给服务器使用) 构造方法: 基本方法: 客户端代码示例: 服务器代码示例: 运行结果: 代码执行流程: 服务器启动,阻塞在accept,等待客户端建立连接. 客户端启动.这里的new操作会触发和服务器之间建立连

    2024年04月25日
    浏览(50)
  • 「网络编程」第二讲:网络编程socket套接字(三)_ 简单TCP网络通信程序的实现

    「前言」文章是关于网络编程的socket套接字方面的,上一篇是网络编程socket套接字(二),下面开始讲解!  「归属专栏」网络编程 「主页链接」个人主页 「笔者」枫叶先生(fy) 「枫叶先生有点文青病」「每篇一句」 I do not know where to go,but I have been on the road. 我不知

    2024年02月11日
    浏览(35)
  • 网络编程套接字 | UDP套接字

    前面的文章中我们叙述了网络编程套接字的一些预备知识点,从本文开始我们就将开始UDP套接字的编写。本文中的服务端与客户端都是在阿里云的云服务器进行编写与测试的。 在v1的版本中我们先来使用一下前面讲过得一些接口,简单的构建一个udp服务器: 然后运行上述的程

    2024年02月09日
    浏览(38)
  • 【探索Linux】P.29(网络编程套接字 —— 简单的TCP网络程序模拟实现)

    在前一篇文章中,我们详细介绍了UDP协议和TCP协议的特点以及它们之间的异同点。 本文将延续上文内容,重点讨论简单的TCP网络程序模拟实现 。通过本文的学习,读者将能够深入了解TCP协议的实际应用,并掌握如何编写简单的TCP网络程序。让我们一起深入探讨TCP网络程序的

    2024年04月14日
    浏览(39)
  • 【探索Linux】P.28(网络编程套接字 —— 简单的UDP网络程序模拟实现)

    在前一篇文章中,我们详细介绍了UDP协议和TCP协议的特点以及它们之间的异同点。 本文将延续上文内容,重点讨论简单的UDP网络程序模拟实现 。通过本文的学习,读者将能够深入了解UDP协议的实际应用,并掌握如何编写简单的UDP网络程序。让我们一起深入探讨UDP网络程序的

    2024年04月08日
    浏览(77)
  • 【网络】网络编程套接字

    目录 一、预备知识 1、网络通信理解 2、源IP地址和目的IP地址 3、端口号 二、网络字节序 三、socket编程接口 1、socket常见API 2、sockaddr结构 3、sockaddr结构体 3.1、sockaddr结构体 3.2、sockaddr_in结构体 四、简单的UDP网络程序 1、创建套接字接口 2、绑定端口号 3、服务器运行 4、创建

    2024年02月14日
    浏览(27)
  • 【网络编程】网络编程套接字(一)

    端口号(port)是传输层协议的内容. 端口号是一个2字节16位的整数; 端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理; IP地址 + 端口号能够标识网络上的某一台主机的某一个进程; 一个端口号只能被一个进程占用. 既然端口号是用来标识一个进程,

    2024年02月12日
    浏览(25)
  • 网络编程2(套接字编程)

    套接字编程:如何编写一个网络通信程序 1.网络通信的数据中都会包含一个完整的五元组: sip,sport,dip,dport,protocol(源IP,源端口,对端IP,对端端口,协议) 五元组完整的描述了数据从哪来,到哪去,用什么数据格式 2.网络通信–两个主机进程之间的通信:客户端服务

    2023年04月09日
    浏览(29)
  • 【网络】网络编程套接字(一)

    在前面我们说过可以使用IP地址来标识一台主机,但是我们光有IP地址就可以完成通信了嘛? 答案是:不可以,当我们的主机接收到了数据以后还要确定这个数据是发送给哪一个进程的,两台主机的两个软件进行网络通信时,我们还需要有一个其他的标识来区分出这个数据要给

    2024年02月06日
    浏览(26)
  • 【JavaEE】网络编程之TCP套接字、UDP套接字

    目录 1.网络编程的基本概念 1.1为什么需要网络编程  1.2服务端与用户端 1.3网络编程五元组  1.4套接字的概念 2.UDP套接字编程 2.1UDP套接字的特点  2.2UDP套接字API 2.2.1DatagramSocket类 2.2.2DatagramPacket类  2.2.3基于UDP的回显程序 2.2.4基于UDP的单词查询  3.TCP套接字编程 3.1TCP套接字的特

    2023年04月20日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包