仿射变换和变换矩阵

这篇具有很好参考价值的文章主要介绍了仿射变换和变换矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、2D图像的仿射变换

仿射变换矩阵,线性代数,矩阵

仿射变换包括 平移、旋转、错切、放缩(各向同性和各向异性)

欧式变换(刚体变换)包括 平移和旋转

相似变换包括平移、旋转、放缩(各向同性)

仿射变换矩阵,线性代数,矩阵

相似变换矩阵有4个自由度 s,θ,tx,ty:

仿射变换矩阵,线性代数,矩阵

仿射变换矩阵有6个自由度:

仿射变换矩阵,线性代数,矩阵

  • 所有变换矩阵只需关注一点:坐标系的变化,即基向量和原点的变化
  • 坐标系变化到哪里,坐标系中的所有点也跟着做同样的变化

参考:

https://www.cnblogs.com/shine-lee/p/10950963.html

二、3D图像的仿射变换

2d变换矩阵推广到3d,其他变换矩阵推广较为简单,只介绍旋转变换矩阵和错切变换矩阵

绕x轴旋转:

 仿射变换矩阵,线性代数,矩阵

绕y轴旋转: 

仿射变换矩阵,线性代数,矩阵

 绕z轴旋转:

仿射变换矩阵,线性代数,矩阵

错切变换矩阵:

参考:

 3D仿射变换矩阵推导_l491337898的博客-CSDN博客_三维仿射变换

【深度好文】3D坐标系下的点的转换矩阵(平移、缩放、旋转、错切) - 知乎 (zhihu.com) 文章来源地址https://www.toymoban.com/news/detail-635036.html

到了这里,关于仿射变换和变换矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MIT线性代数笔记-第31讲-线性变换及对应矩阵

    线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵 例: 考虑一个变换 T T T ,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 to R^2 T : R 2 → R 2 ,如图: ​   图中有两个任意向量 v ⃗ , w ⃗ vec{v} , vec{w} v , w 和一条直线,作 v ⃗

    2024年02月03日
    浏览(57)
  • 线性代数|推导:线性变换与在基下的矩阵一一对应

    前置定义 1 设 T T T 是线性空间 V n V_n V n ​ 中的线性变换,在 V n V_n V n ​ 中取定一个基 α 1 , α 2 , ⋯   , α n boldsymbol{alpha}_1,boldsymbol{alpha}_2,cdots,boldsymbol{alpha}_n α 1 ​ , α 2 ​ , ⋯ , α n ​ ,如果这个基在变换 T T T 下的像(用这个基线性表示)为 { T ( α 1 ) = a 11 α 1 +

    2024年02月04日
    浏览(58)
  • 高等代数(八)-线性变换07:矩阵的有理标准形

    § 7 矩阵的有理标准形 前一节中证明了复数域上任一矩阵 A boldsymbol{A} A 可相似于一个若尔当形矩阵, 这一节将对任意数域 P P P 来讨论类似的问题. 我们证明 P P P 上任一矩阵必相似于一个有理标准形矩阵. 定义 8 对数域 P P P 上的一个多项式 d ˙ ( λ ˙ ) = λ n ˙ + a 1 λ n − 1 + ⋯

    2024年02月19日
    浏览(48)
  • 高等代数(八)-线性变换02:λ-矩阵在初等变换下的标准形

    § 2 λ § 2 lambda §2 λ -矩阵在初等变换下的标准形 λ lambda λ -矩阵也可以有初等变换. 定义 3 下面的三种变换叫做 λ lambda λ -矩阵的初等变换: 矩阵的两行 (列) 互换位置; 矩阵的某一行 (列) 乘非零常数 c c c ; 矩阵的某一行 (列) 加另一行 (列) 的 φ ( λ ) varphi(lambda) φ ( λ ) 倍

    2024年02月19日
    浏览(47)
  • 线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组

    目录 1,矩阵的初等变换 1.1,初等变换 1.2,增广矩阵  ​1.3,定义和性质 1.4,行阶梯型矩阵、行最简型矩阵 1.5,标准形矩阵  1.6,矩阵初等变换的性质  2,矩阵的秩  3,线性方程组的解  初等变换包括三种:交换行或列、某行或列乘以一个非零系数、某行或列加上零一行

    2024年02月04日
    浏览(51)
  • MIT线性代数笔记-第27讲-复数矩阵,快速傅里叶变换

    对于实矩阵而言,特征值为复数时,特征向量一定为复向量,由此引入对复向量的学习 求模长及内积 假定一个复向量 z ⃗ = [ z 1 z 2 ⋮ z n ] vec{z} = begin{bmatrix} z_1 \\\\ z_2 \\\\ vdots\\\\ z_n end{bmatrix} z = ​ z 1 ​ z 2 ​ ⋮ z n ​ ​ ​ ,其中 z 1 , z 2 , ⋯   , z n z_1 , z_2 , cdots , z_n z 1 ​

    2024年02月05日
    浏览(53)
  • MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换

    实矩阵也可能有复特征值,因此无法避免在矩阵运算中碰到复数,本讲学习处理复数矩阵和复向量。 最重要的复矩阵是傅里叶矩阵,它用于傅里叶变换。而对于大数据处理快速傅里叶变换(FFT)显得更为重要,它将傅立叶变换的矩阵乘法中运算的次数从 n 2 n^2 n 2 次降至 n l

    2024年01月17日
    浏览(45)
  • 线性代数(六) 线性变换

    《线性空间》定义了空间,这章节来研究空间与空间的关联性 函数是一个规则或映射,将一个集合中的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为因变量)。 一般函数从 “A” 的每个元素指向 “B” 的一个函数 它不会有一个 “A” 的元素指向多于一个

    2024年02月09日
    浏览(50)
  • 【线性代数】20 基变换,基变换公式,坐标变换公式

     前言:基变换在做图像压缩等计算的时候,经常用到。基变换和相似矩阵的定义也有非常密切的联系:基变换的本质就是变换了基向量的一个关联计算,在最小二乘的算法里面,通过选择正确的基可以将计算进行简化。 而正确的的特征向量和特征值的确定,又和本节的基变

    2024年02月07日
    浏览(51)
  • 线性代数:正交变换学习笔记

    在线性代数中,如果一个矩阵 A A A 满足 A T A = A A T = I A^T A = A A^T = I A T A = A A T = I ,则称其为正交矩阵。正交矩阵也常被称为正交变换。 正交变换是线性变换的一种特殊形式,它不改变向量的长度和夹角。因此,它可以用来描述旋转、镜像等几何变换。 正交矩阵有以下性质:

    2024年02月03日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包