机器学习参数调优

这篇具有很好参考价值的文章主要介绍了机器学习参数调优。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

手动调参  

分析影响模型的参数,设计步长进行交叉验证

我们以随机森林为例:

本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于泛化误差(Genelization Error)与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。

泛化误差是机器学习中,用来衡量模型在未知数据上的准确率的指标;

1、导入相关包

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2、导入乳腺癌数据集,建立模型

由于sklearn自带的数据集已经很工整了,所以无需做预处理,直接使用。

# 导入乳腺癌数据集
data = load_breast_cancer()

# 建立随机森林
rfc = RandomForestClassifier(n_estimators=100, random_state=90)

用交叉验证计算得分
score_pre = cross_val_score(rfc, data.data, data.target, cv=10).mean()
score_pre

3、调参

随机森林主要的参数有n_estimators(子树的数量)、max_depth(树的最大生长深度)、min_samples_leaf(叶子的最小样本数量)、min_samples_split(分支节点的最小样本数量)、max_features(最大选择特征数)。它们对随机森林模型复杂度的影响如下图所示:

n_estimators是影响程度最大的参数,我们先对其进行调整

# 调参,绘制学习曲线来调参n_estimators(对随机森林影响最大)
score_lt = []

# 每隔10步建立一个随机森林,获得不同n_estimators的得分
for i in range(0,200,10):
    rfc = RandomForestClassifier(n_estimators=i+1
                                ,random_state=90)
    score = cross_val_score(rfc, data.data, data.target, cv=10).mean()
    score_lt.append(score)
score_max = max(score_lt)
print('最大得分:{}'.format(score_max),
      '子树数量为:{}'.format(score_lt.index(score_max)*10+1))

# 绘制学习曲线
x = np.arange(1,201,10)
plt.subplot(111)
plt.plot(x, score_lt, 'r-')
plt.show()

机器学习参数调优,自动化,机器学习

如图所示,当n_estimators从0开始增大至21时,模型准确度有肉眼可见的提升。这也符合随机森林的特点:在一定范围内,子树数量越多,模型效果越好。而当子树数量越来越大时,准确率会发生波动,当取值为41时,获得最大得分。

框架自动调参

Optuna是一个自动化的超参数优化软件框架,专门为机器学习而设计。 这里对其进行简单的入门介绍,详细的学习可以参考:https://github.com/optuna/optuna

 

optuna是一个使用python编写的超参数调节框架。一个极简的 optuna 的优化程序中只有三个最核心的概念,目标函数(objective),单次试验(trial),和研究(study)。其中 objective 负责定义待优化函数并指定参/超参数数范围,trial 对应着 objective 的单次执行,而 study 则负责管理优化,决定优化的方式,总试验的次数、试验结果的记录等功能。文章来源地址https://www.toymoban.com/news/detail-635050.html

  • objective:根据目标函数的优化Session,由一系列的trail组成。
  • trail:根据目标函数作出一次执行。
  • study:根据多次trail得到的结果发现其中最优的超参数。

随机森林iris数据集调优

from sklearn.datasets import load_iris
x, y = load_iris().data, load_iris().target
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
def objective(trial):
    global x, y
    X_train, X_test, y_train, y_test=train_test_split(x, y, train_size=0.3)# 数据集划分
    param = {
        "n_estimators": trial.suggest_int('n_estimators', 5, 20),
        "criterion": trial.suggest_categorical('criterion', ['gini','entropy'])
    }

    dt_clf = RandomForestClassifier(**param)
    dt_clf.fit(X_train, y_train)
    pred_dt = dt_clf.predict(X_test)
    score = (y_test==pred_dt).sum() / len(y_test)
    return score
study=optuna.create_study(direction='maximize')
n_trials=20 # try50次
study.optimize(objective, n_trials=n_trials)
print(study.best_value)
print(study.best_params)
#######################################结果######################################
[32m[I 2021-04-12 16:20:13,627][0m A new study created in memory with name: no-name-47fe20d7-e9c0-4bed-bc6d-8113edae0bec[0m
[32m[I 2021-04-12 16:20:13,652][0m Trial 0 finished with value: 0.9523809523809523 and parameters: {'n_estimators': 15, 'criterion': 'gini'}. Best is trial 0 with value: 0.9523809523809523.[0m
[32m[I 2021-04-12 16:20:13,662][0m Trial 1 finished with value: 0.9523809523809523 and parameters: {'n_estimators': 5, 'criterion': 'gini'}. Best is trial 0 with value: 0.9523809523809523.[0m
[32m[I 2021-04-12 16:20:13,680][0m Trial 2 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 15, 'criterion': 'entropy'}. Best is trial 0 with value: 0.9523809523809523.[0m
[32m[I 2021-04-12 16:20:13,689][0m Trial 3 finished with value: 0.9523809523809523 and parameters: {'n_estimators': 7, 'criterion': 'gini'}. Best is trial 0 with value: 0.9523809523809523.[0m
[32m[I 2021-04-12 16:20:13,704][0m Trial 4 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 14, 'criterion': 'gini'}. Best is trial 0 with value: 0.9523809523809523.[0m
[32m[I 2021-04-12 16:20:13,721][0m Trial 5 finished with value: 0.9714285714285714 and parameters: {'n_estimators': 14, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,733][0m Trial 6 finished with value: 0.9619047619047619 and parameters: {'n_estimators': 10, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,753][0m Trial 7 finished with value: 0.9619047619047619 and parameters: {'n_estimators': 18, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,764][0m Trial 8 finished with value: 0.9714285714285714 and parameters: {'n_estimators': 8, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,771][0m Trial 9 finished with value: 0.9333333333333333 and parameters: {'n_estimators': 5, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,795][0m Trial 10 finished with value: 0.9333333333333333 and parameters: {'n_estimators': 20, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,809][0m Trial 11 finished with value: 0.9333333333333333 and parameters: {'n_estimators': 9, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,827][0m Trial 12 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 12, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,842][0m Trial 13 finished with value: 0.9238095238095239 and parameters: {'n_estimators': 11, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,855][0m Trial 14 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 8, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,880][0m Trial 15 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 18, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,899][0m Trial 16 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 13, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,911][0m Trial 17 finished with value: 0.9714285714285714 and parameters: {'n_estimators': 7, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,933][0m Trial 18 finished with value: 0.9428571428571428 and parameters: {'n_estimators': 17, 'criterion': 'entropy'}. Best is trial 5 with value: 0.9714285714285714.[0m
[32m[I 2021-04-12 16:20:13,948][0m Trial 19 finished with value: 0.9523809523809523 and parameters: {'n_estimators': 11, 'criterion': 'gini'}. Best is trial 5 with value: 0.9714285714285714.[0m


0.9714285714285714
{'n_estimators': 14, 'criterion': 'gini'}
##################################################################################

到了这里,关于机器学习参数调优的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Azure - 自动化机器学习AutoML Azure使用详解

    自动化机器学习,简称为AutoML,旨在将机器学习模型的开发中繁琐且重复的任务自动化。这使得数据科学家、分析师以及开发人员能够构建高度可扩展、高效和高性能的ML模型,且不牺牲模型的质量。Azure 机器学习的AutoML功能是基于Microsoft Research团队的前沿技术而开发的。 关

    2024年02月08日
    浏览(49)
  • 人工智能未来:如何应对自动化和机器学习的冲击

    人工智能(Artificial Intelligence, AI)是一种计算机科学的分支,旨在模仿人类智能的思维和行为。AI的目标是创建智能机器,使它们能够执行人类智能的任务,包括学习、理解自然语言、识别图像、解决问题、自主决策等。随着数据量的增加、计算能力的提升和算法的创新,人工智

    2024年02月19日
    浏览(70)
  • 使用机器学习实现自动化测试:提高效率和准确性

    在软件开发的过程中,测试是一个至关重要的环节。传统的手动测试往往耗时耗力,而且存在人为疏漏的可能。为了解决这些问题,许多团队开始将机器学习应用于自动化测试,以提高测试效率和准确性。 本文将介绍如何使用机器学习技术来实现自动化测试,从而显著提升软

    2024年02月15日
    浏览(53)
  • 自动化机器学习流水线:基于Spring Boot与AI机器学习技术的融合探索

    🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式+人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导、简历面试辅导、技术架构设计优化、开发外包等服

    2024年04月27日
    浏览(40)
  • AutoKeras(Python自动化机器学习)多模态数据和多任务

    AutoKeras 拓扑 常规机器学习:scikit-learn示例探索性数据分析和数据预处理,线性回归,决策树 图像分类ResNet模型示例,合成数据集DenseNet模型示例 绘图线性回归和决策树模型 使用Python工具seaborn、matplotlib、pandas、scikit-learn进行特征分析,数据处理 Tensorflow和Keras实现多测感知器

    2024年02月21日
    浏览(49)
  • 自动化运维中的人工智能与机器学习:实现智能化运维

    自动化运维(Automated Operations)是一种通过自动化工具和技术来管理和维护计算机系统的方法。随着云计算、大数据和人工智能等技术的发展,自动化运维的重要性逐渐凸显。人工智能与机器学习在自动化运维中发挥着越来越重要的作用,为智能化运维提供了强大的支持。 本文

    2024年03月10日
    浏览(111)
  • 机器学习没那么难,Azure AutoML帮你简单3步实现自动化模型训练

    在Machine Learning 这个领域,通常训练一个业务模型的难点并不在于算法的选择,而在于前期的数据清理和特征工程这些纷繁复杂的工作,训练过程中的问题在于参数的反复迭代优化。 AutoML 是 Azure Databricks 的一项功能,它自动的对数据进行清理和特征工程并使用数据尝试多种算

    2024年01月21日
    浏览(44)
  • 机器学习参数调优

    分析影响模型的参数,设计步长进行交叉验证 本文将使用sklearn自带的乳腺癌数据集,建立随机森林,并基于 泛化误差(Genelization Error) 与模型复杂度的关系来对模型进行调参,从而使模型获得更高的得分。 泛化误差是机器学习中,用来 衡量模型在未知数据上的准确率 的指

    2024年02月13日
    浏览(21)
  • pytest自动化测试实战之执行参数

    上一篇介绍了如何运行pytest代码,以及用例的一些执行规则,执行用例发现我们中间print输出的内容,结果没有给我们展示出来,那是因为pytest执行时,后面需要带上一些参数。 我们可以在cmd中通过输入 pytest -h 或者pytest --help 来查看帮助内容 奈何安静屏幕小,只写了一部分

    2024年02月13日
    浏览(41)
  • python+pytest接口自动化 —— 参数关联

    参数关联,也叫接口关联,即接口之间存在参数的联系或依赖。在完成某一功能业务时,有时需要按顺序请求多个接口,此时在某些接口之间可能会存在关联关系。 比如:B接口的某个或某些请求参数是通过调用A接口获取的,即需要先请求A接口,从A接口的返回数据中拿到需

    2024年02月04日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包