离散化的两种实现方式【sort或者map】

这篇具有很好参考价值的文章主要介绍了离散化的两种实现方式【sort或者map】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

离散化

定义

把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。
适用范围:数组中元素值域很大,但个数不是很多。
比如将a[]=[1,3,100,2000,500000]映射到[0,1,2,3,4]这个过程就叫离散化。

两种离散化方式

1.利用sort+unique进行数据离散化(适用于区间查找,及更新)

常与前缀和、树状数组、线段树和动态规范结合考查。

先来看一个金典题目:
题目
假定有一个无限长的数轴,数轴上每个坐标上的数都是 0。
现在,我们首先进行 n次操作,每次操作将某一位置 x 上的数加 c。
接下来,进行 m 次询问,每个询问包含两个整数 l 和 r,你需要求出在区间 [ l , r ] 之间的所有数的和。

输入格式:
第一行包含两个整数 n 和 m。
接下来 n行,每行包含两个整数 x 和 c。
再接下来 m 行,每行包含两个整数 l 和 r。

输出格式:
共 m 行,每行输出一个询问中所求的区间内数字和。

数据范围:
−109 ≤ x ≤ 109

1 ≤ n ≤ 105

1 ≤ m ≤ 105

−109 ≤ l ≤ r ≤ 109

− 10000 ≤ c ≤ 10000
输入样例
3 3
1 2
3 6
7 5
1 3
4 6
7 8
输出样例
8
0
5
思路:
由于1 ≤ n ≤ 105 和1 ≤ m ≤ 105 所调用的数字范围较小,而数轴范围较大,故可以将通过离散化处理,将−109 ≤ x ≤ 109
范围缩为 −105 ≤ x ≤ 105 左右,大大提高效率。
离散化的两种实现方式【sort或者map】,算法与数据结构,算法
代码

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 3 * 1e5 + 10;
int a[N], s[N];
vector<int> alls;
vector<PII> add, query;

// 二分查找
int find(int x)
{
	int l = 0, r = alls.size() - 1;
	while (l < r)
	{
		int mid = l + ((r - l) >> 1);
		if (alls[mid] >= x) r = mid;
		else l = mid + 1;
	}
	return l + 1; // 由于S是从1开始的,所以对应映射位置都往前提一位
}
int main()
{
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < n; ++i)
	{
		int x, c;
		cin >> x >> c;
		add.push_back({x, c});
		alls.push_back(x);
	}
	for (int i = 0; i < m; ++i)
	{
		int l, r;
		cin >> l >> r;
		query.push_back({l, r});
		alls.push_back(l);
		alls.push_back(r);
	}
	sort(alls.begin(), alls.end());
	alls.erase(unique(alls.begin(), alls.end()), alls.end());
	for (auto& item : add)
	{
		int x = find(item.first);
		a[x] += item.second;
	}
	for (int i = 1; i <= alls.size(); ++i) s[i] = s[i - 1] + a[i];
	for (auto& item : query)
	{
		int l = find(item.first), r = find(item.second);
		cout << s[r] - s[l - 1] << endl;
	}
	return 0;
}

当然这里也可以用数组+lower_bound来做,下面会说

1.1 Mayor’s posters POJ - 2528

离散化的两种实现方式【sort或者map】,算法与数据结构,算法
思路:
可以将问题转化为,求区间的最小值,让每个区间的海报标记为第i个放的,然后用线段树来做。
查询每个海报区间的最小值是否等于i,如果等于i则没有被完全覆盖。本题的数据量太大,区间是[1, 1e7],
所以要用离散化,存取l和r的相对大小,因为n = 1e4,所以离散过后的区间为[1, 2 * n]。
时间复杂度O(nlogn)

#include<cstdio>
#include<map>
#include<iostream>
#include<algorithm>
#define ls 		rt << 1, l, m
#define rs 		rt << 1 | 1,  m + 1, r
using namespace std;
const int maxn = 2e4 + 5;
int mi[maxn << 2], a[maxn], add[maxn<<2];
struct node{
	int l, r, pos;
}arr[maxn];
int n;
void pushUp(int rt){
	mi[rt] = min(mi[rt << 1], mi[rt << 1 | 1]);
}
//下推标记 
void pushDown(int rt){
	add[rt << 1] = add[rt];
	add[rt << 1 | 1] = add[rt];
	mi[rt << 1] = add[rt];
	mi[rt << 1 | 1] = add[rt];
	add[rt] = 0;
}
//建树,此过程可用memset代替 
void build(int rt, int l, int r){
	if (l == r){
		mi[rt] = 0;
		return;
	}
	int m = (l + r) >> 1;
	build(ls);
	build(rs);
	pushUp(rt);
}
//区间修改 
void update(int rt, int l, int r, int L, int R, int C){
	if (L <= l && r <= R){
		mi[rt] = C;
		add[rt] = C;
		return;
	}
	if(add[rt] != 0)	pushDown(rt);
	int m = (l + r) >> 1;
	if (L <= m)		update(ls, L, R, C);
	if (m < R)		update(rs, L, R, C);
	pushUp(rt);
}
//查询区间最小值 
int query(int rt, int l, int r, int L, int R){
	if (L <= l && r <= R){
		return mi[rt];
	}
	if (add[rt] != 0)	pushDown(rt);
	int m = (l + r) >> 1;
	int res = maxn;
	if (L <= m)		res = min(res, query(ls, L, R));
	if (m < R)		res = min(res, query(rs, L, R));
	return res;
}
//离散化 
void disc(int cnt){
	sort(a, a + cnt);
	int lena = unique(a, a + cnt) - a;
	for (int i = 0; i < n; ++i){
		arr[i].l = lower_bound(a, a + lena, arr[i].l) - a + 1;
		arr[i].r = lower_bound(a, a + lena, arr[i].r) - a + 1;
	//	printf("l = %d   r = %d\n", arr[i].l, arr[i].r);
	}
}
void solve(){
	scanf("%d", &n);
	build(1, 1, n << 1);
	int cnt = 0;
	for (int i = 0; i < n; ++i){
		scanf("%d%d", &arr[i].l, &arr[i].r);
		arr[i].pos = i + 1;
		a[cnt++] = arr[i].l;
		a[cnt++] = arr[i].r;
	}
	disc(cnt);
	for (int i = 0; i < n; ++i){
		update(1, 1, n << 1, arr[i].l, arr[i].r, arr[i].pos);
	} 
	int ans = 0;
	for (int i = 0; i < n; ++i){
		int x = query(1, 1, n << 1, arr[i].l, arr[i].r);
		//printf("x = %d\n", x);
		if (x == arr[i].pos)	ans++;
	}
	printf("%d\n", ans);
}
int main(){
	int t;
	scanf("%d", &t);
	for (int i = 0; i < t; ++i) solve();
	return 0;
}

2.利用map或unordered_map进行数据离散化 (使用与非区间操作)

常与差分、并查集、DFS等算法结合考察

2.1 邮票 FZU - 2227【DFS】

题目描述

离散化的两种实现方式【sort或者map】,算法与数据结构,算法
思路
可以先做映射关系(离散化),然后从最小的数并且这个数出现的次数为1开始dfs,走到哪直接就存到哪。
代码

#include<cstdio>
#include<vector>
#include<map>
#include<cstring>
using namespace std;
const int maxn=1e5+5;
map<int,int>index,data,num;
vector<int>v[maxn];//邻接表,存相对大小的关系 
int cnt,pos;
int dis[maxn];
bool vis[maxn];
void dfs(int x)
{
	if(cnt==pos)	return;
	//int len=v[x].size();
	for(int i=0;i<2;i++) // 题目保证有解,说明一个顶点最多有两个出度
	{
		int y=v[x][i];
		if(!vis[y])
		{
			vis[y]=true;
			dis[pos++]=data[y];
			dfs(y);
		}
		if(cnt==pos)	return;
	}
}
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF)
	{
		int ui,vi;
		cnt=0,pos=0;
		index.clear();
		data.clear();
		num.clear();
		memset(vis,false,sizeof(vis));
		for(int i=0;i<2*n;i++)	v[i].clear();
		while(n--)
		{
			scanf("%d%d",&ui,&vi);
			if(!num[ui]) 
			{
				index[ui]=cnt++;
				data[index[ui]]=ui;//建立映射关系 (1,100) (100,1) 
			}
			if(!num[vi])
			{
				index[vi]=cnt++;
				data[index[vi]]=vi;
			}
			v[index[ui]].push_back(index[vi]);//建立相对大小的对应关系 
			v[index[vi]].push_back(index[ui]);
			num[ui]++;
			num[vi]++;
		}
		int st=0;
		for(map<int,int>::iterator it=num.begin();it!=num.end();it++)
		{
			if(it->second==1) //判断是否唯一出现,第一个唯一出现的肯定是字典序最小且起始的位置	
			{
				st=index[it->first];
				break;
			}
		}
		vis[st]=true;
		dis[pos++]=data[st];
		dfs(st);
		for(int i=0;i<cnt;i++)
		{
			printf("%d",dis[i]);
			if(i<cnt-1)	printf(" ");
			else	printf("\n");
		}
	}
}
2.2 More is better HDU - 1856 【并查集】

题目描述
离散化的两种实现方式【sort或者map】,算法与数据结构,算法
思路:
在集合合并的时,如果两个集合不同,那么在合并成同一个集合的时候,
将被合并的集合里的个数加到这个集合里面,并统计最大值。
坑点:就是当输入n为0时,答案为1,因为当没有朋友对时,各自在自己的房间,所以说答案为1。
代码:

#include<iostream>
#include<cstdio>
#include<map>
#include<utility>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 5;
map<int, int> mp;
int fa[maxn], num[maxn], ans = 0;
void init(int n){
	for (int i = 1; i <= n; ++i){
		fa[i] = i;
		num[i] = 1;
	}
}
int find(int x){
	return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
void _union(int x, int y){
	x = find(x);
	y = find(y);
	if(x != y){
		num[y] += num[fa[x]];
		ans = max(ans, num[y]);
		fa[x] = y;
	}
}
void solve(){
	int n, x, y;
	while (scanf("%d", &n) != EOF){
		int cnt = 0;
		ans = 0;
		init(maxn); 
		mp.clear();
		if (n == 0){
			puts("1");
			continue;
		}
		while (n--){
			scanf("%d%d", &x, &y);
			if(!mp[x])	mp[x] = ++cnt;
			if(!mp[y])	mp[y] = ++cnt;
			_union(mp[x], mp[y]);
		}
		printf("%d\n", ans);
	}
}
int main(){
	solve();
	return 0;
}

2.3 金发姑娘和 N 头牛 - 1952. AcWing题库

题目描述
离散化的两种实现方式【sort或者map】,算法与数据结构,算法
思路:
离散化的两种实现方式【sort或者map】,算法与数据结构,算法
代码文章来源地址https://www.toymoban.com/news/detail-635226.html

#include <iostream>
#include <cstring>
#include <map>
#include <algorithm>

using namespace std;

const int INF = 2e9;

int n, x, y, z;

int main()
{
    map<int, int> b; // 离散化及差分数组
    
    cin >> n >> x >> y >> z;
    for (int i = 0; i < n; i ++ )
    {
        //给三个大区间 + c
        int l, r;
        cin >> l >> r;
        //[-INF,r)
        b[-INF] += x;
        b[l] -= x;
        //[l, r]
        b[l] += y;
        b[r + 1] -= y;
        //b(r, INF]
        b[r + 1] += z;
        b[INF] -= z;
    }
    int res = 0, sum = 0;
    // 枚举差分数组,求前缀和,更新最大值
    
    for(auto item : b)
    {
        sum += item.second;// 前缀和
        res = max(res, sum);
    }
    
    cout << res;
    
    return 0;
}

到了这里,关于离散化的两种实现方式【sort或者map】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • vue实现导出excel的两种方式

    通过vue实现导出有两种方式: (1)后端返回的是一个地址,直接拼接打开下载就行 (2)后端返回的是文件流的形式,这个时候就需要在请求头还有返回值的地方设置一下 (1)设置请求头 (2)设置返回结果,处理返回我文件流 (3)附加说明 有的时候做到上述几步还是不

    2024年02月12日
    浏览(51)
  • vue前端实现上传文件的两种方式

    1.使用form表单的形式 第一种方式就是使用FormData的方式进行上传 html代码: JS代码: 2.使用element-ui的el-upload的方式进行上传 这里我是根据需求封装了一个组件

    2024年02月11日
    浏览(44)
  • 实战:单点登录的两种实现方式,附源码

    最近工作有点忙,好久没更新文章了,正好这两天在整理 单点登陆 相关的文档,今天趁着小孩睡着了🤫,赶紧码一篇 实战文 交差。 单点登录( Single Sign-On , SSO )是一种身份验证服务,允许用户使用单个标识来登录多个应用程序或系统。如下图所示,用户只需要 用户名

    2024年02月08日
    浏览(53)
  • echarts实现3d柱状图的两种方式

    看了不少关于3d柱状图的案例,发现做3d柱状图 常用的两种方式就是 自定义图形和象型柱图, 两种实现方式效果如下: 方法1: echarts.graphic.extendShape 自定义图形 echarts自定义图形的详细用法点这里, 官网点这里, 图中第一个3d柱状图我参考的案例在这里, 看了很多 echarts这种3d案例,

    2024年02月01日
    浏览(51)
  • Verilog 实现优先编码器的两种方式

    1.1 定义:  为了防止多条线信号同时有效,规定只对序号最高的有效信号线进行编码,相当于该线的优先级别最高,称为优先编码器 。      优先编码器可以通过  if else 语句和case语句两种方式实现。 输入描述: ①输入描述: input      [8:0]         I_n 输出描述: ①输出

    2024年02月08日
    浏览(48)
  • Spring Boot实现文件上传的两种方式

    最近的一个小项目里使用到了文件上传、下载功能,今天我打算梳理一下文件上传所涉及的技术及实现。 内容主要包括两部分,如何通过纯 Servlet 的形式进行文件上传、保存(不通过 Spring 框架);另一部分是如何在 Spring Web MVC 中进行文件上传。 HTTP 协议传输文件一般都遵循

    2024年02月05日
    浏览(47)
  • 线程方法接收参数示例,Java的两种线程实现方式区别

    总所周知,Java实现多线程有两种方式,分别是继承Thread类和实现Runable接口,那么它们的区别是什么? 继承 Thread 类: 通过继承 Thread 类,你可以创建一个直接表示线程的类。你可以覆盖 Thread 类中的 run 方法来定义线程的逻辑。当调用 start 方法启动线程时,会执行该类中的

    2024年02月11日
    浏览(43)
  • 【数据结构】归并排序的两种实现方式与计数排序

    前言:在前面我们讲了各种常见的排序,今天我们就来对排序部分收个尾,再来对归并排序通过递归和非递归的方法进行实现,与对计数排序进行简单的学习。 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:数据结构 👈 💯代码仓库:卫卫周大胖的学习日记💫 💪关注博

    2024年01月18日
    浏览(50)
  • Nacos 的底层实现原理 & 注册中心的两种调用方式

    目录 1. Nacos 的底层实现原理 1.1 配置中心自动刷新实现原理 1.2  注册中心底层实现原理 2. Nacos 注册中心的两种调用方式  2.1 RestTemplate + Spring Cloud LoadBalancer 的调用方式 2.2 使用 OpenFeign + Spring Cloud LoadBalancer  Nacos 配置中心的自动刷新,其底层是基于 长轮询+事件驱动 的方式来

    2024年02月05日
    浏览(45)
  • html实现原生table并设置表格边框的两种方式

    虽然第三方表格插件多不胜数,但是很多场景还是需要用到原生table,掌握html原生table的实现方法,是前端开发的必备技能。例如:print-js打印、html2canvas生成图片等,用原生table可以规避很多问题。 首先,在写原生table之前,我们先认识一下 border-collapse 属性: border-collapse

    2024年02月15日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包