【构建卷积神经网络】

这篇具有很好参考价值的文章主要介绍了【构建卷积神经网络】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

构建卷积神经网络

  • 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致

全连接层:batch784,各个像素点之间都是没有联系的。
卷积层:batch
12828,各个像素点之间是有联系的。

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets,transforms 
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

首先读取数据

  • 分别构建训练集和测试集(验证集)
  • DataLoader来迭代取数据
# 定义超参数 
input_size = 28  #图像的总尺寸28*28
num_classes = 10  #标签的种类数
num_epochs = 3  #训练的总循环周期
batch_size = 64  #一个撮(批次)的大小,64张图片

# 训练集
train_dataset = datasets.MNIST(root='./data',  
                            train=True,   
                            transform=transforms.ToTensor(),  
                            download=True) 

# 测试集
test_dataset = datasets.MNIST(root='./data', 
                           train=False, 
                           transform=transforms.ToTensor())

# 构建batch数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

卷积网络模块构建

  • 一般卷积层,relu层,池化层可以写成一个套餐
  • 注意卷积最后结果还是一个特征图,需要把图转换成向量才能做分类或者回归任务

图像是二维卷积 conv2
视频是三维卷积 conv3
单向量是一维卷积 conv1
官网有关conv2d的输出宽度和长度的计算公式
【构建卷积神经网络】,# 人工智能pytorch框架,cnn,人工智能,神经网络

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # 1:灰度图;3:RGB
                out_channels=16,            # 要得到几多少个特征图,即是卷积核的个数 
                kernel_size=5,              # 卷积核大小
                stride=1,                   # 步长
                padding=2,                  # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1
            ),                              # 输出的特征图为 (16, 28, 28)
            nn.ReLU(),                      # relu层
            nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # 输出 (32, 14, 14)
            nn.ReLU(),                      # relu层
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(2),                # 输出 (32, 7, 7)
        )
        
        self.conv3 = nn.Sequential(         # 下一个套餐的输入 (32, 7, 7)
            nn.Conv2d(32, 64, 5, 1, 2),     # 输出 (64, 7, 7)
            nn.ReLU(),             # 输出 (64, 7, 7)
        )
        
        self.out = nn.Linear(64 * 7 * 7, 10)   # 全连接层得到的结果

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = x.view(x.size(0), -1)           # flatten操作,结果为:(batch_size, 64 * 7 * 7)
        output = self.out(x)
        return output

准确率作为评估标准

def accuracy(predictions, labels):
    pred = torch.max(predictions.data, 1)[1] 
    rights = pred.eq(labels.data.view_as(pred)).sum() 
    return rights, len(labels) 

训练网络模型

# 实例化
net = CNN() 
#损失函数
criterion = nn.CrossEntropyLoss() 
#优化器
optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法

#开始训练循环
for epoch in range(num_epochs):
    #当前epoch的结果保存下来
    train_rights = [] 
    
    for batch_idx, (data, target) in enumerate(train_loader):  #针对容器中的每一个批进行循环
        net.train()                             
        output = net(data) 
        loss = criterion(output, target) 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        right = accuracy(output, target) 
        train_rights.append(right) 

    
        if batch_idx % 100 == 0: 
            
            net.eval() 
            val_rights = [] 
            
            for (data, target) in test_loader:
                output = net(data) 
                right = accuracy(output, target) 
                val_rights.append(right)
                
            #准确率计算
            train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
            val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))

            print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
                epoch, batch_idx * batch_size, len(train_loader.dataset),
                100. * batch_idx / len(train_loader), 
                loss.data, 
                100. * train_r[0].numpy() / train_r[1], 
                100. * val_r[0].numpy() / val_r[1]))

【构建卷积神经网络】,# 人工智能pytorch框架,cnn,人工智能,神经网络文章来源地址https://www.toymoban.com/news/detail-635428.html

练习

  • 再加入一层卷积,效果怎么样?
  • 当前任务中为什么全连接层是3277 其中每一个数字代表什么含义

到了这里,关于【构建卷积神经网络】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理

    卷积神经网络(CNN),也被称为ConvNets或Convolutional Neural Networks,是一种深度学习神经网络架构,主要用于处理和分析具有网格状结构的数据,特别是图像和视频数据。CNN 在计算机视觉任务中表现出色,因为它们能够有效地捕获和识别图像中的特征,具有平移不变性(transla

    2024年02月05日
    浏览(68)
  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(66)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(100)
  • 毕业设计:基于卷积神经网络的古诗词生成系统 人工智能

    目录  前言 设计思路       一、课题背景与意义       二、算法理论原理                2.1 深度学习                2.2 神经网络       三、检测的实现                3.1 数据集                3.2 实验环境搭建                3.3 模型训练 最后        📅大

    2024年04月12日
    浏览(50)
  • 【人工智能与机器学习】基于卷积神经网络CNN的猫狗识别

    很巧,笔者在几月前的计算机设计大赛作品设计中也采用了猫狗识别,目前已推国赛评选中 但当时所使用的方法与本次作业要求不太一致,又重新做了一遍,下文将以本次作业要求为主,介绍CNN卷积神经网络实现猫狗识别 猫狗识别和狗品种识别是计算机视觉领域中一个重要

    2024年02月13日
    浏览(54)
  • 深入了解神经网络:构建人工智能的基石

    目录 引言: 第一部分:神经元 - 生物的灵感 第二部分:人工神经元 - 数学的力量 第三部分:神经网络 - 层层堆叠 第四部分:训练神经网络 - 损失函数和反向传播算法 结论: 神经网络是一种受到生物神经系统启发的人工智能模型,它重现了大脑中神经元之间相互连接的方式

    2024年04月15日
    浏览(61)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(78)
  • 【人工智能】使用Python构建神经网络模型预测房价

    目录 一 、实验目的 二 、实验内容 三 、实验原理 四 、实验过程 数据处理 1.1数据读入 1.2缺失值处理 1.3数据归一化 1.4数据集乱序 1.6数据集分批次 模型设计与配置 2.1 构建前向网络结构,定义假设空间 2.2初始化参数w和b,使用标准正态分布随机生成 训练网络 3.1外层循环

    2024年02月03日
    浏览(47)
  • 90 | Python人工智能篇 —— 深度学习算法 Keras基于卷积神经网络的情感分类

    情感分类是自然语言处理(NLP)领域的一个重要任务,它旨在将文本划分为积极、消极或中性等不同情感类别。深度学习技术,尤其是卷积神经网络(CNN),在情感分类任务中取得了显著的成果。Keras作为一个高级的深度学习框架,提供了便捷易用的工具来构建和训练情感分

    2024年02月13日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包