【TI毫米波雷达笔记】sdk type避坑

这篇具有很好参考价值的文章主要介绍了【TI毫米波雷达笔记】sdk type避坑。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【TI毫米波雷达】sdk传参时的type避坑

MMWave_open函数

这个函数要传一个结构体进去 然后结构体里面有个adcoutcfg结构体变量 adcoutcfg结构体里面共有三个变量 一个adcbitformat结构体 另外两保留 点开adcbitformat结构体发现是个32位段 一共四级结构体 那么请问 为什么adcoutcfg变量不直接定义成一个32位无符号整形? 另外 0和1是使能还是不使能 可不可以统一一下 同一个变量里面两种规定

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

/*! \brief
* Rx/Tx Channel Configuration
*/
typedef struct rlChanCfg
{
    /**
     * @ brief  RX Channel Bitmap \n
                b0 RX0 Channel Enable \n
                0   Disable RX Channel 0 \n
                1   Enable RX Channel 0 \n
                b1 RX1 Channel Enable \n
                0   Disable RX Channel 1 \n
                1   Enable RX Channel 1 \n
                b2 RX2 Channel Enable \n
                0   Disable RX Channel 2 \n
                1   Enable RX Channel 2 \n
                b3 RX3 Channel Enable \n
                0   Disable RX Channel 3 \n
                1   Enable RX Channel 3 \n
                b15:4 - RESERVED \n
     */
    rlUInt16_t rxChannelEn;
    /**
     * @brief  TX Channel Bitmap \n
                b0 TX0 Channel Enable \n
                0   Disable TX Channel 0 \n
                1   Enable TX Channel 0\n
                b1 TX1 Channel Enable \n
                0   Disable TX Channel 1 \n
                1   Enable TX Channel 1 \n
                b2 TX2 Channel Enable \n
                0   Disable TX Channel 2 \n
                1   Enable TX Channel 2 \n
                b15:3 - RESERVED \n
                @note : TX2 is supported only on some of the devices, Please refer device data \n
                        sheet. \n
     */
    rlUInt16_t txChannelEn;
    /**
     * @brief  Enable Cascading \n
                 0x0000 SINGLECHIP: Single mmWave sensor application\n
                 0x0001 MULTICHIP_MASTER: Multiple mmwave sensor application. This mmwave is \n
                 the master chip and generates LO and conveys to other mmwave sensor. \n
                 This is applicable only in AWR1243.\n
                 0x0002 MULTICHIP_SLAVE: Multiple mmwave sensor application. This mmwave is a \n
                 slave chip and uses LO conveyed to it by the master mmwave sensor. \n
                 This is applicable only in AWR1243 \n
                 @note : Please refer device data sheet for cascading capability and 20G SYNC
                         pins \n
     */
    rlUInt16_t cascading;
    /**
     * @brief  Cascading pinout config \n
     *         b0 - CLKOUT_MASTER_DIS \n
     *              0 - 20G FM_CW_CLKOUT from master is enabled \n
     *              1 - 20G FM_CW_CLKOUT from master is disabled \n
     *         b1 - SYNCOUT_MASTER_DIS \n
     *              0 - 20G FM_CW_SYNCOUT from master is enabled \n
     *              1 - 20G FM_CW_SYNCOUT from master is disabled \n
     *         b2 - CLKOUT_SLAVE_EN \n
     *              0 - 20G FM_CW_CLKOUT from slave is disabled \n
     *              1 - 20G FM_CW_CLKOUT from slave is enabled \n
     *         b3 - SYNCOUT_SLAVE_EN \n
     *              0 - 20G FM_CW_SYNCOUT from slave is disabled \n
     *              1 - 20G FM_CW_SYNCOUT from slave is enabled \n
     *         b4 - INTLO_MASTER_EN \n
     *              0 - Master uses looped back LO \n
     *              1 - Master uses internal LO \n
     *         b5 - OSCCLKOUT_MASTER_DIS \n
     *              0 - OSCCLKOUT from master is enabled \n
     *              1 - OSCCLKOUT from master is disabled \n
     *      b15:6 - RESERVED \n
     */
    rlUInt16_t cascadingPinoutCfg;
}rlChanCfg_t;
typedef struct rlAdcBitFormat
{
    /**
     * @brief  ADC out bits - 0(12 Bits), 1(14 Bits), 2(16 Bits)
     */
    rlUInt32_t b2AdcBits           :2;
    /**
     * @brief  Reserved for Future use
     */
    rlUInt32_t b6Reserved0        :6;
    /**
     * @brief Number of bits to reduce ADC full scale by
               Valid range: 0 to (16 - Number of ADC bits)
               For e.g. for 12 bit ADC output, this field can take values 0, 1, 2 or 3 \n
               For 14 bit ADC output, this field can take values 0, 1 or 2 \n
               For 16 bit ADC output, this field can take only value 0 \n
      */
    rlUInt32_t b8FullScaleReducFctr:8;
    /**
     * @brief  ADC out format- 0(Real), 1(Complex), 2(Complex with Image band), 3(Pseudo Real)
     */
    rlUInt32_t b2AdcOutFmt         :2;
    /**
     * @brief  Reserved for Future use
     */
    rlUInt32_t b14Reserved1        :14;
}rlAdcBitFormat_t;

附录:结构框架

雷达基本原理叙述

雷达工作原理是上电-发送chirps-帧结束-处理-上电循环
一个Frame,首先是信号发送,比如96个chirp就顺次发出去,然后接收回来,混频滤波,ADC采样,这些都是射频模块的东西。射频完成之后,FFT,CFAR,DOA这些就是信号处理的东西。然后输出给那个结构体,就是当前帧获得的点云了。
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
在射频发送阶段 一个frame发送若干个chirp 也就是上图左上角
第一个绿色点为frame start 第二个绿色点为frame end
其中发送若干chirps(小三角形)
chirps的个数称为numLoops(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 no of chirp loops

frame end 到 周期结束的时间为计算时间 称为inter frame period
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
frame start到循环结束的时间称为framePeriodicity(代码中 rlFrameCfg_t结构体)
在mmwave studio上位机中 则称为 Periodicity

如下图frame配置部分
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
在inter frame Periodicity时间内(比如这里整个周期是55ms)
就是用于计算和处理的时间 一定比55ms要小
如果chirps很多的话 那么计算时间就会减小

如果是处理点云数据 则只需要每一帧计算一次点云即可
计算出当前帧的xyz坐标和速度 以及保存时间戳

雷达天线排列位置

在工业雷达包:

C:\ti\mmwave_industrial_toolbox_4_12_0\antennas\ant_rad_patterns

路径下 有各个EVM开发板的天线排列说明
同样的 EVM手册中也有
如IWR6843AOPEVM:
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
其天线的间距等等位于数据手册:
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

芯片框架

IWR6843AOP可以分成三个主要部分及多个外设
BSS:雷达前端部分
MSS:cortex-rf4内核 主要用于控制
DSS: DSP C674内核 主要用于信号处理
外设:UART GPIO DPM HWA等

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
其中 大部分外设可以被MSS或DSS调用
另外 雷达前端BSS部分在SDK里由MMWave API调用

代码框架上 可以分成两个代码 MSS和DSS 两个代码同时运行 通过某些外设进行同步 协同运作

但也可以只跑一个内核 在仅MSS模式下 依旧可以调用某些用于信号处理的外设 demo代码就是如此

如下图为demo代码流程
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

Demo工程功能

IWR6843AOP的开箱工程是根据IWR6843AOPEVM开发板来的
该工程可以将IWR6843AOP的两个串口利用起来 实现的功能主要是两个方面:
通过115200波特率的串口配置参数 建立握手协议
通过115200*8的串口输出雷达数据
此工程需要匹配TI官方的上位机:mmWave_Demo_Visualizer_3.6.0来使用
该上位机可以在连接串口后自动化操作 并且对雷达数据可视化
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
关于雷达参数配置 则在SDK的mmw\profiles目录下
言简意赅 可以直接更改该目录下的文件参数来达到配置雷达参数的目的
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

但这种方法不利于直接更改 每次用上位机运行后的参数是固定的(上位机运行需要SDK环境) 所以也可以在代码中写死 本文探讨的就是这个方向

CCS工程导入

首先 在工业雷达包目录下找到该工程设置

C:\ti\mmwave_industrial_toolbox_4_12_0\labs\Out_Of_Box_Demo\src\xwr6843AOP

使用CCS的import project功能导入工程后 即可完成环境搭建
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
这里用到的SDK最新版为3.6版本

工程叙述

以下来自官方文档 可以直接跳过

Software Tasks

The demo consists of the following (SYSBIOS) tasks:

MmwDemo_initTask. This task is created/launched by main and is a one-time active task whose main functionality is to initialize drivers (<driver>_init), MMWave module (MMWave_init), DPM module (DPM_init), open UART and data path related drivers (EDMA, HWA), and create/launch the following tasks (the CLI_task is launched indirectly by calling CLI_open).
CLI_task. This command line interface task provides a simplified 'shell' interface which allows the configuration of the BSS via the mmWave interface (MMWave_config). It parses input CLI configuration commands like chirp profile and GUI configuration. When sensor start CLI command is parsed, all actions related to starting sensor and starting the processing the data path are taken. When sensor stop CLI command is parsed, all actions related to stopping the sensor and stopping the processing of the data path are taken
MmwDemo_mmWaveCtrlTask. This task is used to provide an execution context for the mmWave control, it calls in an endless loop the MMWave_execute API.
MmwDemo_DPC_ObjectDetection_dpmTask. This task is used to provide an execution context for DPM (Data Path Manager) execution, it calls in an endless loop the DPM_execute API. In this context, all of the registered object detection DPC (Data Path Chain) APIs like configuration, control and execute will take place. In this task. When the DPC's execute API produces the detected objects and other results, they are transmitted out of the UART port for display using the visualizer.

Data Path

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Top Level Data Path Processing Chain
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Top Level Data Path Timing

The data path processing consists of taking ADC samples as input and producing detected objects (point-cloud and other information) to be shipped out of UART port to the PC. The algorithm processing is realized using the DPM registered Object Detection DPC. The details of the processing in DPC can be seen from the following doxygen documentation:
ti/datapath/dpc/objectdetection/objdethwa/docs/doxygen/html/index.html

Output information sent to host

Output packets with the detection information are sent out every frame through the UART. Each packet consists of the header MmwDemo_output_message_header_t and the number of TLV items containing various data information with types enumerated in MmwDemo_output_message_type_e. The numerical values of the types can be found in mmw_output.h. Each TLV item consists of type, length (MmwDemo_output_message_tl_t) and payload information. The structure of the output packet is illustrated in the following figure. Since the length of the packet depends on the number of detected objects it can vary from frame to frame. The end of the packet is padded so that the total packet length is always multiple of 32 Bytes.

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Output packet structure sent to UART
The following subsections describe the structure of each TLV.

List of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS)

Length: (Number of detected objects) x (size of DPIF_PointCloudCartesian_t)

Value: Array of detected objects. The information of each detected object is as per the structure DPIF_PointCloudCartesian_t. When the number of detected objects is zero, this TLV item is not sent. The maximum number of objects that can be detected in a sub-frame/frame is DPC_OBJDET_MAX_NUM_OBJECTS.

The orientation of x,y and z axes relative to the sensor is as per the following figure. (Note: The antenna arrangement in the figure is shown for standard EVM (see gAntDef_default) as an example but the figure is applicable for any antenna arrangement.)

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Coordinate Geometry
The whole detected objects TLV structure is illustrated in figure below.
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Detected objects TLV

Range profile
Type: (MMWDEMO_OUTPUT_MSG_RANGE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: Array of profile points at 0th Doppler (stationary objects). The points represent the sum of log2 magnitudes of received antennas expressed in Q9 format.

Noise floor profile
Type: (MMWDEMO_OUTPUT_MSG_NOISE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: This is the same format as range profile but the profile is at the maximum Doppler bin (maximum speed objects). In general for stationary scene, there would be no objects or clutter at maximum speed so the range profile at such speed represents the receiver noise floor.
Azimuth static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of "azimuth" virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the number of “azimuth” virtual antennas. The antenna symbols are arranged in the order as they occur at the input to azimuth FFT. Based on this data the static azimuth heat map could be constructed by the GUI running on the host.

Azimuth/Elevation static heatmap
Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_ELEVATION_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of all virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
 Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the total number of active virtual antennas. The antenna symbols are arranged in the order as they occur in the radar cube matrix. This TLV is sent by AOP version of MMW demo, that uses AOA2D DPU. Based on this data the static azimuth or elevation heat map could be constructed by the GUI running on the host.

Range/Doppler heatmap
Type: (MMWDEMO_OUTPUT_MSG_RANGE_DOPPLER_HEAT_MAP)

Length: (Range FFT size) x (Doppler FFT size) (size of uint16_t)

Value: Detection matrix DPIF_DetMatrix::data. The order is :
 X(range bin 0, Doppler bin 0),...,X(range bin 0, Doppler bin D-1),
        ...
        X(range bin R-1, Doppler bin 0),...,X(range bin R-1, Doppler bin D-1)
Stats information
Type: (MMWDEMO_OUTPUT_MSG_STATS )

Length: (size of MmwDemo_output_message_stats_t)

Value: Timing information as per MmwDemo_output_message_stats_t. See timing diagram below related to the stats.

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Processing timing

Note:

The MmwDemo_output_message_stats_t::interChirpProcessingMargin is not computed (it is always set to 0). This is because there is no CPU involvement in the 1D processing (only HWA and EDMA are involved), and it is not possible to know how much margin is there in chirp processing without CPU being notified at every chirp when processing begins (chirp event) and when the HWA-EDMA computation ends. The CPU is intentionally kept free during 1D processing because a real application may use this time for doing some post-processing algorithm execution.
While the MmwDemo_output_message_stats_t::interFrameProcessingTime reported will be of the current sub-frame/frame, the MmwDemo_output_message_stats_t::interFrameProcessingMargin and MmwDemo_output_message_stats_t::transmitOutputTime will be of the previous sub-frame (of the same MmwDemo_output_message_header_t::subFrameNumber as that of the current sub-frame) or of the previous frame.
The MmwDemo_output_message_stats_t::interFrameProcessingMargin excludes the UART transmission time (available as MmwDemo_output_message_stats_t::transmitOutputTime). This is done intentionally to inform the user of a genuine inter-frame processing margin without being influenced by a slow transport like UART, this transport time can be significantly longer for example when streaming out debug information like heat maps. Also, in a real product deployment, higher speed interfaces (e.g LVDS) are likely to be used instead of UART. User can calculate the margin that includes transport overhead (say to determine the max frame rate that a particular demo configuration will allow) using the stats because they also contain the UART transmission time.

The CLI command “guMonitor” specifies which TLV element will be sent out within the output packet. The arguments of the CLI command are stored in the structure MmwDemo_GuiMonSel_t.

Side information of detected objects
Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS_SIDE_INFO)

Length: (Number of detected objects) x (size of DPIF_PointCloudSideInfo_t)

Value: Array of detected objects side information. The side information of each detected object is as per the structure DPIF_PointCloudSideInfo_t). When the number of detected objects is zero, this TLV item is not sent.
Temperature Stats
Type: (MMWDEMO_OUTPUT_MSG_TEMPERATURE_STATS)

Length: (size of MmwDemo_temperatureStats_t)

Value: Structure of detailed temperature report as obtained from Radar front end. MmwDemo_temperatureStats_t::tempReportValid is set to return value of rlRfGetTemperatureReport. If MmwDemo_temperatureStats_t::tempReportValid is 0, values in MmwDemo_temperatureStats_t::temperatureReport are valid else they should be ignored. This TLV is sent along with Stats TLV described in Stats information
Range Bias and Rx Channel Gain/Phase Measurement and Compensation

Because of imperfections in antenna layouts on the board, RF delays in SOC, etc, there is need to calibrate the sensor to compensate for bias in the range estimation and receive channel gain and phase imperfections. The following figure illustrates the calibration procedure.

【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
Calibration procedure ladder diagram

The calibration procedure includes the following steps:

Set a strong target like corner reflector at the distance of X meter (X less than 50 cm is not recommended) at boresight.
Set the following command in the configuration profile in .../profiles/profile_calibration.cfg, to reflect the position X as follows: where D (in meters) is the distance of window around X where the peak will be searched. The purpose of the search window is to allow the test environment from not being overly constrained say because it may not be possible to clear it of all reflectors that may be stronger than the one used for calibration. The window size is recommended to be at least the distance equivalent of a few range bins. One range bin for the calibration profile (profile_calibration.cfg) is about 5 cm. The first argument "1" is to enable the measurement. The stated configuration profile (.cfg) must be used otherwise the calibration may not work as expected (this profile ensures all transmit and receive antennas are engaged among other things needed for calibration).
   measureRangeBiasAndRxChanPhase 1 X D
Start the sensor with the configuration file.
In the configuration file, the measurement is enabled because of which the DPC will be configured to perform the measurement and generate the measurement result (DPU_AoAProc_compRxChannelBiasCfg_t) in its result structure (DPC_ObjectDetection_ExecuteResult_t::compRxChanBiasMeasurement), the measurement results are written out on the CLI port (MmwDemo_measurementResultOutput) in the format below: For details of how DPC performs the measurement, see the DPC documentation.
   compRangeBiasAndRxChanPhase <rangeBias> <Re(0,0)> <Im(0,0)> <Re(0,1)> <Im(0,1)> ... <Re(0,R-1)> <Im(0,R-1)> <Re(1,0)> <Im(1,0)> ... <Re(T-1,R-1)> <Im(T-1,R-1)>
The command printed out on the CLI now can be copied and pasted in any configuration file for correction purposes. This configuration will be passed to the DPC for the purpose of applying compensation during angle computation, the details of this can be seen in the DPC documentation. If compensation is not desired, the following command should be given (depending on the EVM and antenna arrangement) Above sets the range bias to 0 and the phase coefficients to unity so that there is no correction. Note the two commands must always be given in any configuration file, typically the measure commmand will be disabled when the correction command is the desired one.
   For ISK EVM:
   compRangeBiasAndRxChanPhase 0.0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
   For AOP EVM
   compRangeBiasAndRxChanPhase 0.0   1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 
Streaming data over LVDS
The LVDS streaming feature enables the streaming of HW data (a combination of ADC/CP/CQ data) and/or user specific SW data through LVDS interface. The streaming is done mostly by the CBUFF and EDMA peripherals with minimal CPU intervention. The streaming is configured through the MmwDemo_LvdsStreamCfg_t CLI command which allows control of HSI header, enable/disable of HW and SW data and data format choice for the HW data. The choices for data formats for HW data are:

MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_DISABLED
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_ADC
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ
In order to see the high-level data format details corresponding to the above data format configurations, refer to the corresponding slides in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx

When HW data LVDS streaming is enabled, the ADC/CP/CQ data is streamed per chirp on every chirp event. When SW data streaming is enabled, it is streamed during inter-frame period after the list of detected objects for that frame is computed. The SW data streamed every frame/sub-frame is composed of the following in time:

HSI header (HSIHeader_t): refer to HSI module for details.
User data header: MmwDemo_LVDSUserDataHeader
User data payloads:
Point-cloud information as a list : DPIF_PointCloudCartesian_t x number of detected objects
Point-cloud side information as a list : DPIF_PointCloudSideInfo_t x number of detected objects

The format of the SW data streamed is shown in the following figure:
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库
LVDS SW Data format

Note:

Only single-chirp formats are allowed, multi-chirp is not supported.
When number of objects detected in frame/sub-frame is 0, there is no transmission beyond the user data header.
For HW data, the inter-chirp duration should be sufficient to stream out the desired amount of data. For example, if the HW data-format is ADC and HSI header is enabled, then the total amount of data generated per chirp is:
(numAdcSamples * numRxChannels * 4 (size of complex sample) + 52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] ) rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
The chirp time Tc in us = idle time + ramp end time in the profile configuration. For n-lane LVDS with each lane at a maximum of B Mbps,
maximum number of bytes that can be send per chirp = Tc * n * B / 8 which should be greater than the total amount of data generated per chirp i.e
Tc * n * B / 8 >= round-up(numAdcSamples * numRxChannels * 4 + 52, 256).
E.g if n = 2, B = 600 Mbps, idle time = 7 us, ramp end time = 44 us, numAdcSamples = 512, numRxChannels = 4, then 7650 >= 8448 is violated so this configuration will not work. If the idle-time is doubled in the above example, then we have 8700 > 8448, so this configuration will work.
For SW data, the number of bytes to transmit each sub-frame/frame is:
52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] + sizeof(MmwDemo_LVDSUserDataHeader_t) [=8] +
number of detected objects (Nd) * { sizeof(DPIF_PointCloudCartesian_t) [=16] + sizeof(DPIF_PointCloudSideInfo_t) [=4] } rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
or X = round-up(60 + Nd * 20, 256). So the time to transmit this data will be
X * 8 / (n*B) us. The maximum number of objects (Ndmax) that can be detected is defined in the DPC (DPC_OBJDET_MAX_NUM_OBJECTS). So if Ndmax = 500, then time to transmit SW data is 68 us. Because we parallelize this transmission with the much slower UART transmission, and because UART transmission is also sending at least the same amount of information as the LVDS, the LVDS transmission time will not add any burdens on the processing budget beyond the overhead of reconfiguring and activating the CBUFF session (this overhead is likely bigger than the time to transmit).
The total amount of data to be transmitted in a HW or SW packet must be greater than the minimum required by CBUFF, which is 64 bytes or 32 CBUFF Units (this is the definition CBUFF_MIN_TRANSFER_SIZE_CBUFF_UNITS in the CBUFF driver implementation). If this threshold condition is violated, the CBUFF driver will return an error during configuration and the demo will generate a fatal exception as a result. When HSI header is enabled, the total transfer size is ensured to be at least 256 bytes, which satisfies the minimum. If HSI header is disabled, for the HW session, this means that numAdcSamples * numRxChannels * 4 >= 64. Although mmwavelink allows minimum number of ADC samples to be 2, the demo is supported for numAdcSamples >= 64. So HSI header is not required to be enabled for HW only case. But if SW session is enabled, without the HSI header, the bytes in each packet will be 8 + Nd * 20. So for frames/sub-frames where Nd < 3, the demo will generate exception. Therefore HSI header must be enabled if SW is enabled, this is checked in the CLI command validation.
Implementation Notes
The LVDS implementation is mostly present in mmw_lvds_stream.h and mmw_lvds_stream.c with calls in mss_main.c. Additionally HSI clock initialization is done at first time sensor start using MmwDemo_mssSetHsiClk.
EDMA channel resources for CBUFF/LVDS are in the global resource file (mmw_res.h, see Hardware Resource Allocation) along with other EDMA resource allocation. The user data header and two user payloads are configured as three user buffers in the CBUFF driver. Hence SW allocation for EDMA provides for three sets of EDMA resources as seen in the SW part (swSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit. The maximum number of HW EDMA resources are needed for the data-format MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ, which as seen in the corresponding slide in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx is 12 channels (+ shadows) including the 1st special CBUFF EDMA event channel which CBUFF IP generates to the EDMA, hence the HW part (hwwSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit has 11 table entries.
Although the CBUFF driver is configured for two sessions (hw and sw), at any time only one can be active. So depending on the LVDS CLI configuration and whether advanced frame or not, there is logic to activate/deactivate HW and SW sessions as necessary.
The CBUFF session (HW/SW) configure-create and delete depends on whether or not re-configuration is required after the first time configuration.
For HW session, re-configuration is done during sub-frame switching to re-configure for the next sub-frame but when there is no advanced frame (number of sub-frames = 1), the HW configuration does not need to change so HW session does not need to be re-created.
For SW session, even though the user buffer start addresses and sizes of headers remains same, the number of detected objects which determines the sizes of some user buffers changes from one sub-frame/frame to another sub-frame/frame. Therefore SW session needs to be recreated every sub-frame/frame.
User may modify the application software to transmit different information than point-cloud in the SW data e.g radar cube data (output of range DPU). However the CBUFF also has a maximum link list entry size limit of 0x3FFF CBUFF units or 32766 bytes. This means it is the limit for each user buffer entry [there are maximum of 3 entries -1st used for user data header, 2nd for point-cloud and 3rd for point-cloud side information]. During session creation, if this limit is exceeded, the CBUFF will return an error (and demo will in turn generate an exception). A single physical buffer of say size 50000 bytes may be split across two user buffers by providing one user buffer with (address, size) = (start address, 25000) and 2nd user buffer with (address, size) = (start address + 25000, 25000), beyond this two (or three if user data header is also replaced) limit, the user will need to create and activate (and wait for completion) the SW session multiple times to accomplish the transmission.

The following figure shows a timing diagram for the LVDS streaming (the figure is not to scale as actual durations will vary based on configuration).
【TI毫米波雷达笔记】sdk type避坑,TI毫米波雷达笔记,笔记,服务器,数据库

How to bypass CLI
Re-implement the file mmw_cli.c as follows:

MmwDemo_CLIInit should just create a task with input taskPriority. Lets say the task is called "MmwDemo_sensorConfig_task".
All other functions are not needed
Implement the MmwDemo_sensorConfig_task as follows:
Fill gMmwMCB.cfg.openCfg
Fill gMmwMCB.cfg.ctrlCfg
Add profiles and chirps using MMWave_addProfile and MMWave_addChirp functions
Call MmwDemo_CfgUpdate for every offset in Offsets for storing CLI configuration (MMWDEMO_xxx_OFFSET in mmw.h)
Fill gMmwMCB.dataPathObj.objDetCommonCfg.preStartCommonCfg
Call MmwDemo_openSensor
Call MmwDemo_startSensor (One can use helper function MmwDemo_isAllCfgInPendingState to know if all dynamic config was provided)
Hardware Resource Allocation
The Object Detection DPC needs to configure the DPUs hardware resources (HWA, EDMA). Even though the hardware resources currently are only required to be allocated for this one and only DPC in the system, the resource partitioning is shown to be in the ownership of the demo. This is to illustrate the general case of resource allocation across more than one DPCs and/or demo's own processing that is post-DPC processing. This partitioning can be seen in the mmw_res.h file. This file is passed as a compiler command line define
"--define=APP_RESOURCE_FILE="<ti/demo/xwr64xx/mmw/mmw_res.h>" 

in mmw.mak when building the DPC sources as part of building the demo application and is referred in object detection DPC sources where needed as文章来源地址https://www.toymoban.com/news/detail-635679.html

#include APP_RESOURCE_FILE 

到了这里,关于【TI毫米波雷达笔记】sdk type避坑的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • TI IWR1642毫米波雷达使用串口原始数据采集与分析

    本文编辑:调皮哥的小助理 如果文章能够给你带来价值,希望能够关注我。 如果文章能够让你学习到知识,希望你能够点个赞! 好了下面开始今天的学习内容吧。 今天给大家分享的是 《TI 的IWR1642毫米波雷达使用串口原始数据采集与分析》。通常TI的系列雷达如IWR1642、IWR

    2023年04月09日
    浏览(73)
  • 毫米波雷达 TI IWR1443 在 ROS 中使用 Rviz 可视化雷达点云

    官方文档:TI mmWave ROS Driver Users Guide 官方文档有更详细的步骤说明,本篇博客仅为本人的实验记录。 实验环境:IWR1443 + linux 18.04 + ROS melodic 使用 Uniflash 成功烧录对应 SDK 版本中的 Demo 能够在 mmwave demo visulalizer 中成功运行开箱演示的 demo,看到数据。 参考链接:毫米波雷达

    2024年02月13日
    浏览(49)
  • TI毫米波雷达人体生命体征(呼吸、心跳)信号提取算法(IWR6843ISK+DCA1000EVM)

    目录 一、引言 二、毫米波雷达检测呼吸、心跳基本原理 1.TI官方开发资料: 2.博主“调皮连续波”开源资料以及原理讲解: 三、 毫米波雷达提取呼吸、心跳信号Matlab算法处理 1.硬件平台: IWR6843ISKEVM+DCA1000EVM 2.mmavestudio参数设置:  配置说明: 算法流程简介: (1) 预处理

    2024年02月08日
    浏览(48)
  • TI毫米波级联雷达评估板 MMWCAS-DSP-EVM 和MMWCAS-RF-EVM

    本文主要是TI的MMWCAS-DSP-EVM 和MMWCAS-RF-EVM 两块评估板的一些使用心得和毫米波雷达的学习总结。 毫米波(mmWave)是一类使用短波长电磁波的特殊雷达技术。通过捕捉反射的信号,雷达系统可以确定物体的距离、速度和角度。毫米波雷达可发射波长为毫米量级的信号,短波长让所需

    2024年01月16日
    浏览(64)
  • 毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar

    原始笔记链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==mid=2247486680idx=1sn=edf41d4f95395d7294bc958ea68d3a68chksm=cf51be21f826373790bc6d79bcea6eb2cb3d09bb1860bba0af0fd5e60c448ca006976503e460#rd ↑ uparrow ↑ 点击上述链接即可阅读全文 毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar Ab

    2024年02月12日
    浏览(32)
  • 国内首门3D毫米波&4D毫米波雷达理论实战路线来了!

    自上世纪九十年代毫米波雷达首次前装量产上车起,已经经过了二十多个年头。近年来,随着新能源汽车智能化大潮来袭,主机厂对毫米波雷达的需求与日俱增,尤其是在辅助驾驶领域,不管是入门级L2,还是高阶NOA,毫米波雷达的单车搭载数量均显著提升。据研究数据显示

    2024年03月19日
    浏览(45)
  • 毫米波雷达实时采集教

    https://www.cnblogs.com/dhyc/p/10510876.html 毫米波雷达实时采集教程---- 雷达资料分享——RSP1 多普勒雷达开发套件

    2024年02月08日
    浏览(49)
  • 4D毫米波雷达和3D雷达、激光雷达全面对比

              众所周知,传统3D毫米波雷达存在如下性能缺陷:         1)静止目标和地物杂波混在一起,难以区分;         2) 横穿车辆和行人多普勒为零或很低,难以检测;         3) 高处物体和地面目标不能区分,容易造成误刹,影响安全性;        

    2024年02月05日
    浏览(52)
  • 毫米波雷达:从 3D 走向 4D

    2024年01月02日
    浏览(58)
  • 车载毫米波雷达的校准问题(1)

        任何精密的传感器都需要进行校准,校准的目的在于使测量的结果更加准确。车载毫米波雷达作为一个车规级的可能关系到生命安全的传感器,其测量结果的准确性显得尤为重要。 但是车载毫米波雷达(或者说任何传感器)的校准这个话题很大,涉及的东西有很多,想要详

    2023年04月21日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包