大数据技术之Clickhouse---入门篇---SQL操作、副本

这篇具有很好参考价值的文章主要介绍了大数据技术之Clickhouse---入门篇---SQL操作、副本。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大数据技术之Clickhouse---入门篇---SQL操作、副本,Clickhouse,大数据,clickhouse,sql
                       星光下的赶路人star的个人主页

                      积一勺以成江河,累微尘以崇峻极

1、SQL操作

基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持,
这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。

1.1 Insert

基本与标准 SQL(MySQL)基本一致
(1)标准
insert into [table_name] values(…),(….)
(2)从表到表的插入
insert into [table_name] select a,b,c from [table_name_2]

1.2 Update 和 Delete

ClickHouse 提供了 Delete 和 Update 的能力,这类操作被称为 Mutation 查询,它可以看
做 Alter 的一种。
虽然可以实现修改和删除,但是和一般的 OLTP 数据库不一样,Mutation 语句是一种很
“重”的操作,而且不支持事务。
“重”的原因主要是每次修改或者删除都会导致放弃目标数据的原有分区,重建新分区。
所以尽量做批量的变更,不要进行频繁小数据的操作。
(1)删除操作

alter table t_order_smt delete where sku_id ='sku_001';

(2)修改操作

alter table t_order_smt update total_amount=toDecimal32(2000.00,2) where id 
=102;

由于操作比较“重”,所以 Mutation 语句分两步执行,同步执行的部分其实只是进行
新增数据新增分区和并把旧分区打上逻辑上的失效标记。直到触发分区合并的时候,才会删
除旧数据释放磁盘空间,一般不会开放这样的功能给用户,由管理员完成。

1.3 查询操作

ClickHouse 基本上与标准 SQL 差别不大
支持子查询
支持 CTE(Common Table Expression 公用表表达式 with 子句)
支持各种 JOIN,但是 JOIN 操作无法使用缓存,所以即使是两次相同的 JOIN 语句,
ClickHouse 也会视为两条新 SQL
窗口函数(官方正在测试中…)
不支持自定义函数
GROUP BY 操作增加了 with rollup\with cube\with total 用来计算小计和总计。
(1)插入数据

hadoop102 :) alter table t_order_mt delete where 1=1;
insert into t_order_mt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(101,'sku_002',2000.00,'2020-06-01 12:00:00'),
(103,'sku_004',2500.00,'2020-06-01 12:00:00'),
(104,'sku_002',2000.00,'2020-06-01 12:00:00'),
(105,'sku_003',600.00,'2020-06-02 12:00:00'),
(106,'sku_001',1000.00,'2020-06-04 12:00:00'),
(107,'sku_002',2000.00,'2020-06-04 12:00:00'),
(108,'sku_004',2500.00,'2020-06-04 12:00:00'),
(109,'sku_002',2000.00,'2020-06-04 12:00:00'),
(110,'sku_003',600.00,'2020-06-01 12:00:00');

(2)with rollup:从右至左去掉维度进行小计

hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by 
id,sku_id with rollup;

(3)with cube : 从右至左去掉维度进行小计,再从左至右去掉维度进行小计

hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by 
id,sku_id with cube;

(4)with totals: 只计算合计

hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by 
id,sku_id with totals;

1.4 alter操作

同 MySQL 的修改字段基本一致
1、新增字段

alter table tableName add column newcolname String after col1;

2、修改字段类型

alter table tableName modify column newcolname String;

3、删除字段

alter table tableName drop column newcolname;

1.5 导出数据

clickhouse-client --query "select * from t_order_mt where 
create_time='2020-06-01 12:00:00'" --format CSVWithNames> 
/opt/module/data/rs1.csv

更多支持格式参照:https://clickhouse.tech/docs/en/interfaces/formats/

2、副本

副本的目的主要是保障数据的高可用性,即使一台 ClickHouse 节点宕机,那么也可以从
其他服务器获得相同的数据。

2.1 副本写入流程

大数据技术之Clickhouse---入门篇---SQL操作、副本,Clickhouse,大数据,clickhouse,sql

2.2 配置步骤

1、启动 zookeeper 集群
2、在 hadoop102 的/etc/clickhouse-server/config.d 目录下创建一个名为 metrika.xml
的配置文件,内容如下:
注::也可以不创建外部文件,直接在 config.xml 中指定

<?xml version="1.0"?>
<yandex>
<zookeeper-servers>
 <node index="1">
 <host>hadoop102</host>
 <port>2181</port>
 </node>
 <node index="2">
 <host>hadoop103</host>
 <port>2181</port>
 </node>
 <node index="3">
 <host>hadoop104</host>
 <port>2181</port>
 </node>
</zookeeper-servers>
</yandex>

3、同步到hadoop103和hadoop104上
4、在 hadoop102 的/etc/clickhouse-server/config.xml 中增加

<zookeeper incl="zookeeper-servers" optional="true" />
<include_from>/etc/clickhouse-server/config.d/metrika.xml</include_from>

5、同步到 hadoop103 和 hadoop104 上
(1)分别在 hadoop102 和 hadoop103 上启动 ClickHouse 服务
注意:因为修改了配置文件,如果以前启动了服务需要重启
注意:我们演示副本操作只需要在 hadoop102 和 hadoop103 两台服务器即可,上面的
操作,我们 hadoop104 可以你不用同步,我们这里为了保证集群中资源的一致性,做了同
步。

6、在 hadoop102 和 hadoop103 上分别建表
副本只能同步数据,不能同步表结构,所以我们需要在每台机器上自己手动建表
大数据技术之Clickhouse---入门篇---SQL操作、副本,Clickhouse,大数据,clickhouse,sql
                      您的支持是我创作的无限动力

大数据技术之Clickhouse---入门篇---SQL操作、副本,Clickhouse,大数据,clickhouse,sql
                      希望我能为您的未来尽绵薄之力

大数据技术之Clickhouse---入门篇---SQL操作、副本,Clickhouse,大数据,clickhouse,sql
                      如有错误,谢谢指正;若有收获,谢谢赞美文章来源地址https://www.toymoban.com/news/detail-635905.html

到了这里,关于大数据技术之Clickhouse---入门篇---SQL操作、副本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ClickHouse进阶(五):副本与分片-1-

    进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术, IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 📌订阅:拥抱独家专题,你的订阅将点燃我的创作热情! 👍点赞:赞同优秀创作,你

    2024年02月10日
    浏览(39)
  • ClickHouse高可用集群分片-副本实操(四)

    目录 一、ClickHouse高可用之ReplicatedMergeTree引擎 二、 ClickHouse高可用架构准备-环境说明和ZK搭建  三、高可用集群架构-ClickHouse副本配置实操 四、ClickHouse高可用集群架构分片 4.1 ClickHouse高可用架构之两分片实操  4.2 ClickHouse高可用架构之两分片建表实操 什么是CK的副本引擎

    2023年04月20日
    浏览(36)
  • ClickHouse进阶(六):副本与分片-2-Distributed引擎

    进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 📌订阅:拥抱独家专题,你的订阅将点燃我的创作热情! 👍点赞:赞同优秀创作,你

    2024年02月10日
    浏览(42)
  • 大数据ClickHouse(二十):ClickHouse 可视化工具操作

    文章目录 ClickHouse 可视化工具操作 一、tabix 1、直接浏览器访问 2、ClickHouse内嵌方式

    2024年02月02日
    浏览(37)
  • OLAP系列:三、clickhouse Docker集群部署指南(3分片1副本模式)

    一是为了学习容器,另外也是帮助一些同学解决机器资源紧缺,能够在一台是宿主机部署一套clickhouse集群服务。 本章内容适合开发测试环境使用,生产环境还需要更多细节的处理工作,只能作为参考。 二、部署准备 1、机器准备 172.25.16.108 2、创建容器网络 3、镜像准备 1、下

    2024年02月12日
    浏览(52)
  • clickhouse 数据导入导出操作

    在ClickHouse中处理CSV和TSV数据 ClickHouse支持从CSV导入和导出数据。由于 CSV 文件可以具有不同的格式细节,包括标题行、自定义分隔符和转义符号,因此 ClickHouse 提供了格式和设置来有效地解决每种情况。 从 CSV 文件导入数据 在导入数据之前,让我们创建一个具有相关结构的表

    2024年01月20日
    浏览(39)
  • clickhouse数据库 使用http 方式交付查询sql

    今天使用clickhouse 的HTTP 方式进行查询语句 clickhouse  服务  搭建在192.168.0.111 上面 那么我们如何快速的去查询呢   如下 我们可以使用curl 功能 或者直接在浏览器上输入对应的查询命令  如下: 说明: 前面的IP 是我们clickhouse所在的服务器IP底子 端口      8123     默认的H

    2024年01月25日
    浏览(44)
  • 【入门篇】ClickHouse最优秀的开源列式存储数据库

    ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。 在传统的行式数据库系统中,数据按如下顺序存储: Row WatchID JavaEnable Title GoodEvent EventTime #0 89354350662 1 Investor Relations 1 2016-05-18 05:19:20 #1 90329509958 0 Contact us 1 2016-05-18 08:10:20 #2 89953706054 1 Mission 1 2016-05-18 07:38:00 #N …

    2024年02月04日
    浏览(43)
  • ClickHouse--11--ClickHouse API操作

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 JDBC–01–简介 ClickHouse java代码 SparkCore 写入 ClickHouse,可以直接采用写入方式。下面案例是使用 SparkSQL 将结果存入 ClickHouse对应的表中。在 ClickHouse 中需要预先创建好对应的结果表 可以通过 Flink 原生

    2024年02月21日
    浏览(38)
  • ClickHouse基础知识(一):ClickHouse 入门

    ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的 列式存储数据库 (DBMS),使用 C++ 语言编写,主要用于 在线分析处理查询(OLAP) ,能够使用 SQL 查询实时生成分析数据报告。 以下面的表为例: 1)采用行式存储时,数据在磁盘上的组织结构为: 好处是想查某个人所有的属性时,

    2024年02月03日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包