数据可视化(六)多个子图及seaborn使用

这篇具有很好参考价值的文章主要介绍了数据可视化(六)多个子图及seaborn使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.多个子图绘制

#绘制多个子图
#subplot(*args,**kwargs)  每个subplot函数只能绘制一个子图
#subplots(nrows,ncols)
#fig_add_subplot(行,列,区域)
#绘制子图第一种方式
plt.subplot(2,2,1)#第一个绘图区域两行两列
#plt.subplot(221)简写方式
plt.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
plt.subplot(2,2,2)#两行两列绘图区的第二个绘图区
plt.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
plt.subplot(2,1,2)#两行一列  ,第二行绘制
x=[1,2,3,4,5]
y=[random.randint(10,50) for i in range(5)]
plt.bar(x,y)
plt.show()
#绘制的第二种方式
#两行三列的画图区域
#figure画布,axes坐标轴对象
figure,axes=plt.subplots(2,3)
plt.show()

figure,axes=plt.subplots(2,2)
axes[0,0].plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
axes[0,1].plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
x=[1,2,3,4,5]
y=[random.randint(10,50) for i in range(5)]
axes[1,0].bar(x,y)
x=[random.randint(10,50) for i in range(5)]
axes[1,1].pie(x,autopct='%1.1f%%')
plt.show()
#绘制子图的第三种方式
#绘制画布
fig=plt.figure()
ax1=fig.add_subplot(2,2,1)  #两行两列第一个绘图区域
ax1.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
ax2=fig.add_subplot(2,2,2)  #两行两列第二个绘图区域
ax2.plot([1,2,3,4,5],[random.randint(1,10) for i in range(5)],'ro')
ax3=fig.add_subplot(2,2,3)
ax3.bar([1,2,3,4,5],[random.randint(1,10) for i in range(5)])
ax4=fig.add_subplot(2,2,4)
ax4.pie([random.randint(1,10) for i in range(5)],autopct='%1.1f%%')
plt.show()

2.

#图表的保存
#图表保存格式jpeg,tiff,png
#plt.savefig(图名)

3.seaborn使用,首先安装。如果在pycharm中安装报错,先安装Scipy

import matplotlib.pyplot as plt
import seaborn as sns
#seaborn绘图
#绘制简单柱状图
sns.set_style('darkgrid')#设置风格样式
x=[1,2,3,4,5]
y=[20,6,50,9,56]
sns.barplot(x,y)
plt.show()

数据可视化(六)多个子图及seaborn使用,python,matplotlib

 文章来源地址https://www.toymoban.com/news/detail-635978.html

到了这里,关于数据可视化(六)多个子图及seaborn使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Seaborn数据可视化(三)

    使用displot()绘制直方图。 结果图: 使用kdeplot绘制密度图。 结果图: 示例1: 结果图:    示例2: 结果图:   结果图; 结果图:    

    2024年02月11日
    浏览(49)
  • Python 数据可视化-2子图操作

            Figure对象允许划分为多个绘图区域,每个绘图区域都是一个Axes对象,它拥有属于自己的坐标系统,被称为子图。要想在画布上创建一个子图,则可以通过subplot()函数实现。subplot()函数会将整个绘图区域等分为 “nrows (行)* ncols(列)”的矩阵区域 ,之后按照 从

    2024年02月08日
    浏览(33)
  • 2. seaborn-可视化分类数据

    在 seaborn 中,有几种不同的方法可以对分类数据进行可视化。类似于 relplot() 与 scatterplot() 或者 lineplot() 之间的关系,有两种方法可以制作这些图。有许多 axes-level 函数可以用不同的方式绘制分类数据,还有一个 figure-level 接口 catplot() ,可以对它们进行统一的高级访问。 将不

    2024年01月25日
    浏览(43)
  • 数学建模——数据可视化seaborn

    数学建模——数据可视化seaborn 写作由来: 最近在准备数学建模美赛,在画图表的时候,之前一直用的是matplotlib,但是画出来总感觉不是很好看,而美赛挺注重文章的美观,所以找到了另一个实用的高级的Python包——seaborn。 概括 风格(style) 有5种风格 white,whitegrid,dark,darkgri

    2024年02月13日
    浏览(39)
  • 深入 Seaborn:Python 数据可视化进阶

    在上一篇介绍 Seaborn 的文章中,我们讨论了一些基础的可视化工具,例如直方图,以及如何使用 Seaborn 控制图形的样式和颜色。在这篇文章中,我们将深入 Seaborn 的中级使用,包括创建复杂的统计图形,如散点图矩阵、箱线图和小提琴图等。 Seaborn 的 pairplot 函数可以创建一个

    2024年02月16日
    浏览(41)
  • 数据分析——seaborn可视化(笔记自用)

     参考内容  【Python】一小时带你掌握seaborn可视化_哔哩哔哩_bilibili 目录 一、变量分布  1、查看异常值  2、观察变量分布  3、figure-level functions具有FacetGrid特性  二、数值变量的关系分析  1、sns.relplot(): 2、sns.lmplot():分析两个变量的线性关系 3、sns.displot():绘制两个变量的联

    2023年04月08日
    浏览(36)
  • 初探 Seaborn:Python 数据可视化入门

    Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,它提供了更高级别的接口,使得创建美观的统计图形变得非常简单。在这篇文章中,我们将讨论 Seaborn 的基础使用方法,包括如何创建各种常见的统计图形。 首先,我们需要安装 Seaborn 库。这可以通过 pip 安装: 安装完成后

    2024年02月17日
    浏览(48)
  • Python 数据可视化:Seaborn 库的使用

    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 Seaborn 是一个基于 Python 的数据可视化库,它

    2024年02月07日
    浏览(42)
  • 掌握 Seaborn:Python 数据可视化高级篇

    在前两篇文章中,我们探讨了 Seaborn 的基础和中级功能,包括了如何绘制各种统计图形以及如何控制图形的样式和颜色。在这篇高级篇中,我们将更进一步,介绍如何使用 Seaborn 创建复合图形,如网格图、因子图和聚类热图等。 网格图(Grids)是一种用于显示高维数据关系的

    2024年02月16日
    浏览(42)
  • 探索数据之美:深入Seaborn的数据可视化艺术与技巧【第26篇—python:Seaborn】

    Seaborn是一款基于Matplotlib的统计数据可视化库,其高级接口和精美的默认样式使得数据可视化更加简便和美观。 Seaborn在数据可视化中具有以下特点和优势: 简化API: Seaborn的API设计简洁易用,特别适合初学者。几行代码即可生成漂亮且具有信息量的图表。 美观的默认样式:

    2024年01月18日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包