Python-OpenCV中的图像处理-几何变换

这篇具有很好参考价值的文章主要介绍了Python-OpenCV中的图像处理-几何变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

几何变换

对图像进行各种几个变换,例如移动,旋转,仿射变换等。

图像缩放

  • cv2.resize()
  1. cv2.INTER_AREA
  2. v2.INTER_CUBIC
  3. v2.INTER_LINEAR

res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

height, width = img.shape[:2]
res = cv2.resize(img, (2width, 2height), interpolation=cv2.INTER_CUBIC)

import numpy as np
import cv2

# 图像缩放
img = cv2.imread('./resource/image/1.jpg')

# 缩放 时推荐使用cv2.INTER_AREA 
# 扩展 时推荐使用cv2.INTER_CUBIC(慢) 或 cv2.INTER_LINEAR(默认使用)
# 原图放大两倍
res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

# 或
#height, width = img.shape[:2]
#res = cv2.resize(img, (2*width, 2*height), interpolation=cv2.INTER_CUBIC)

while True:
    cv2.imshow('res', res)
    cv2.imshow('img', img)

    if cv2.waitKey(1)&0xFF == 27:
        break
cv2.destroyAllWindows()

图像平移

OpenCV提供了使用函数cv2.warpAffine()实现图像平移效果,该函数的语法为

  • cv2.warpAffine(src, M, (cols, rows))
  1. src:输入的源图像
  2. M:变换矩阵,即平移矩阵,M = [[1, 0, tx], [0, 1, ty]] 其中,tx和ty分别代表在x和y方向上的平移距离。
  3. (cols, rows):输出图像的大小,即变换后的图像大小

平移就是将对象换一个位置。如果你要沿( x, y)方向移动,移动的距离
是( tx, ty),你可以以下面的方式构建移动矩阵:
M = [ 1 0 t x 0 1 t y ] M=\left[ \begin{matrix} 1&0&t_x\\ 0 &1 &t_y \end{matrix} \right] M=[1001txty]

import cv2
import numpy as np

img = cv2.imread('./resource/opencv/image/messi5.jpg')

# 获取图像的行和列
rows, cols = img.shape[:2]

# 定义平移矩阵,沿着y轴方向向下平移100个像素点
# M = np.float32([[1, 0, 0], [0, 1, 100]])

# 定义平移矩阵,沿着x轴方向向右平移50个像素点,沿着y轴方向向下平移100个像素点
M = np.float32([[1, 0, -50], [0 ,1, 100]])

# 执行平移操作
result = cv2.warpAffine(img, M, (cols, rows))

# 显示结果图像
cv2.imshow('result', result)
cv2.waitKey(0)

Python-OpenCV中的图像处理-几何变换,OpenCV Python,python,opencv,图像处理

图像旋转

  • cv2.getRotationMatrix2D()
    对一个图像旋转角度 θ, 需要使用到下面形式的旋转矩阵:
    M = [ c o s θ − s i n θ s i n θ c o s θ ] M=\left[ \begin{matrix} cosθ&-sinθ \\sinθ&cosθ \end{matrix} \right] M=[cosθsinθsinθcosθ]
import numpy as np
import cv2

# 图像旋转 缩放
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape

# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子,以及窗口大小来防止旋转后超出边界的问题
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 0.6)
print(M)

# 第三个参数是输出图像的尺寸中心
dst = cv2.warpAffine(img, M, (2*cols, 2*rows))
while (1):
    cv2.imshow('img', dst)
    if cv2.waitKey(1)&0xFF == 27:
        break
cv2.destroyAllWindows()

Python-OpenCV中的图像处理-几何变换,OpenCV Python,python,opencv,图像处理
dst = cv2.warpAffine(img, M, (1cols, 1rows))
Python-OpenCV中的图像处理-几何变换,OpenCV Python,python,opencv,图像处理

仿射变换

在仿射变换中,原图中所有的平行线在结果图像中同样平行。为了创建这个矩阵我们需要从原图像中找到三个点以及他们在输出图像中的位置。然后cv2.getAffineTransform 会创建一个 2x3 的矩阵,最后这个矩阵会被传给函数 cv2.warpAffine。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 仿射变换
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_COLOR)
rows, cols, ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)

pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100], [200,50], [100,250]])

# 行,列,通道数
M = cv2.getAffineTransform(pts1, pts2)
dts = cv2.warpAffine(img, M, (cols, rows))

plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dts), plt.title('Output')
plt.show()

Python-OpenCV中的图像处理-几何变换,OpenCV Python,python,opencv,图像处理

透视变换

对于视角变换,我们需要一个 3x3 变换矩阵。在变换前后直线还是直线。要构建这个变换矩阵,你需要在输入图像上找 4 个点,以及他们在输出图像上对应的位置。这四个点中的任意三个都不能共线。这个变换矩阵可以有函数cv2.getPerspectiveTransform() 构建。然后把这个矩阵传给函数cv2.warpPerspective()

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 透视变换
img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
rows,cols,ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

pts1 = np.float32([[60,80],[368,65],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])

M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, (400, 400))

plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dst), plt.title('Output')
plt.show()

Python-OpenCV中的图像处理-几何变换,OpenCV Python,python,opencv,图像处理文章来源地址https://www.toymoban.com/news/detail-636508.html

到了这里,关于Python-OpenCV中的图像处理-几何变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python-OpenCV中的图像处理-图像直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月12日
    浏览(41)
  • Python-OpenCV中的图像处理-图像金字塔

    同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。 cv2.pyrUp():上采样 cv2.pyrDown():下采样 高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。顶部图像中的每个像素值等于下一层图

    2024年02月13日
    浏览(40)
  • Python-OpenCV中的图像处理-边缘检测

    Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在 1986 年提出的。它是一个有很多步构成的算法:噪声去除、计算图像梯度、非极大值抑制、滞后阀值等。 Canny(image: Mat, threshold1, threshold2, edges=…, apertureSize=…, L2gradient=…) 在 OpenCV 中只需要一个函数: cv2.Canny(),

    2024年02月13日
    浏览(31)
  • Python-OpenCV中的图像处理-物体跟踪

    现在我们知道怎样将一幅图像从 BGR 转换到 HSV 了,我们可以利用这一点来提取带有某个特定颜色的物体。在 HSV 颜色空间中要比在 BGR 空间中更容易表示一个特定颜色。在我们的程序中,我们要提取的是一个蓝色的物体。下面就是就是我们要做的几步: • 从视频中获取每一帧

    2024年02月13日
    浏览(36)
  • Python-OpenCV中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月13日
    浏览(32)
  • Python-OpenCV中的图像处理-直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月13日
    浏览(33)
  • Python-OpenCV中的图像处理-颜色空间转换

    在 OpenCV 中有超过 150 中进行颜色空间转换的方法。但是你以后就会 发现我们经常用到的也就两种: BGR G r a y 和 B G R Gray 和 BGR G r a y 和 BGR HSV。 注意:在 OpenCV 的 HSV 格式中, H(色彩/色度)的取值范围是 [0, 179],S(饱和度)的取值范围 [0, 255], V(亮度)的取值范围 [0,

    2024年02月13日
    浏览(23)
  • Python-OpenCV中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(43)
  • Python-OpenCV中的图像处理-形态学转换

    形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等 主要涉及函数:cv2.erode(), cv2.dilate(), cv2.morphologyEx() 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化

    2024年02月13日
    浏览(39)
  • Python-OpenCV中的图像处理-GrabCut算法交互式前景提取

    cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode=…) img:输入图像 mask:掩模图像,用来确定那些区域是背景,前景,可能是前景/背景等。 可以设置为: cv2.GC_BGD,cv2.GC_FGD,cv2.GC_PR_BGD,cv2.GC_PR_FGD,或者直接输入 0,1,2,3 也行。 rect :包含前景的矩形,格式为

    2024年02月13日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包