Python-OpenCV中的图像处理-图像平滑

这篇具有很好参考价值的文章主要介绍了Python-OpenCV中的图像处理-图像平滑。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图像平滑

使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。

平均滤波

这是由一个归一化卷积框完成的。他只是用卷积框覆盖区域所有像素的平均值来代替中心元素。可以使用函数 cv2.blur() 和 cv2.boxFilter() 来完这个任务。可以同看查看文档了解更多卷积框的细节。我们需要设定卷积框的宽和高。
一个3x3的归一化卷积框:
K = 1 9 [ 1 1 1 1 1 1 1 1 1 ] K=\frac{1}{9}\left[\begin{matrix} 1&1&1 \\1&1&1\\1&1&1\end{matrix}\right] K=91 111111111
注意:如果不想使用归一化卷积框,你应该使用 cv2.boxFilter(),这时要传入参数 normalize=False。
dst=cv2.boxFilter(src,ddepth,ksize)

import numpy as np
import cv2
from matplotlib import pyplot as plt


# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):
    result = image.copy()
    # 测量图片的长和宽
    w, h, = image.shape[:2]
    # 生成n个椒盐噪声
    for i in range(n):
        x = np.random.randint(1, w)
        y=  np.random.randint(1, h)
        if np.random.randint(0, 2) == 0 :
            result[x, y] = 0
        else:
            result[x,y] = 255
    return result

# 平均
# 这是由一个归一化卷积框完成的,
# cv2.blur()和cv2.boxFiter()来实现。
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)

# 原图添加椒盐噪声
saltnoise_img = add_peppersalt_noise(img, 10000)

blur = cv2.blur(saltnoise_img, (5,5))
boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3))
# boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3), normalize=0)

plt.subplot(221), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(cv2.cvtColor(saltnoise_img, cv2.COLOR_BGR2RGB)), plt.title('add noise'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)), plt.title('blur'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(cv2.cvtColor(boxfilter, cv2.COLOR_BGR2RGB)), plt.title('boxfilter'), plt.xticks([]), plt.yticks([])
plt.show()

Python-OpenCV中的图像处理-图像平滑,OpenCV Python,python,opencv,图像处理

高斯模糊

现在把卷积核换成高斯核(简单来说,方框不变,将原来每个方框的值是相等的,现在里面的值是符合高斯分布的,方框中心的值最大,其余方框根据距离中心元素的距离递减,构成一个高斯小山包。原来的求平均数现在变成求加权平均数,全就是方框里的值)。实现的函数是 cv2.GaussianBlur()。我们需要指定高斯核的宽和高(必须是奇数)。以及高斯函数沿 X, Y 方向的标准差。如果我们只指定了 X 方向的的标准差, Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。如果你愿意的话,你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯核。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 高斯模糊
# 卷积核换成高斯核,即方框不变,将原来方框相等的值,换成符合高斯分部的值,方框中心值最大,其余值递减,构成一个高斯小山包
# 高斯核的宽和高必须是奇数

# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):
    result = image.copy()
    # 测量图片的长和宽
    w, h, = image.shape[:2]
    # 生成n个椒盐噪声
    for i in range(n):
        x = np.random.randint(1, w)
        y=  np.random.randint(1, h)
        if np.random.randint(0, 2) == 0 :
            result[x, y] = 0
        else:
            result[x,y] = 255
    return result

# 获取高斯核
k1 = cv2.getGaussianKernel(3, 1)
k2 = cv2.getGaussianKernel(5,2)
print(k1)
print(k2)

# 彩色图像高斯模糊
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
dst1 = cv2.GaussianBlur(img, (5,5), 0)

# 灰度图像高斯模糊
gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
dst2 = cv2.GaussianBlur(gray, (5,5), 0)


plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(dst1, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(dst2, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.show()

Python-OpenCV中的图像处理-图像平滑,OpenCV Python,python,opencv,图像处理

中值模糊

顾名思义就是用与卷积框对应像素的中值来替代中心像素的值。这个滤波器经常用来去除椒盐噪声。前面的滤波器都是用计算得到的一个新值来取代中心像素的值,而中值滤波是用中心像素周围(也可以使他本身)的值来取代他。他能有效的去除噪声。卷积核的大小也应该是一个奇数。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 中值滤波
# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):
    result = image.copy()
    # 测量图片的长和宽
    w, h, = image.shape[:2]
    # 生成n个椒盐噪声
    for i in range(n):
        x = np.random.randint(1, w)
        y=  np.random.randint(1, h)
        if np.random.randint(0, 2) == 0 :
            result[x, y] = 0
        else:
            result[x,y] = 255
    return result

img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
median = cv2.medianBlur(img, 5)

gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
median_gray = cv2.medianBlur(gray, 5)

plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original')
plt.subplot(222), plt.imshow(median, 'gray'), plt.title('medianBlur')
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray')
plt.subplot(224), plt.imshow(median_gray, 'gray'), plt.title('medianBlur')
plt.show()

Python-OpenCV中的图像处理-图像平滑,OpenCV Python,python,opencv,图像处理

双边滤波

函数 cv2.bilateralFilter() 能在保持边界清晰的情况下有效的去除噪音。但是这种操作与其他滤波器相比会比较慢。我们已经知道高斯滤波器是求中心点邻近区域像素的高斯加权平均值。这种高斯滤波器只考虑像素之间的空间关系,而不会考虑像素值之间的关系(像素的相似度)。所以这种方法不会考虑一个像素是否位于边界。因此边界也会别模糊掉,而这正不是我们想要。双边滤波在同时使用空间高斯权重和灰度值相似性高斯权重。空间高斯函数确保只有邻近区域的像素对中心点有影响,灰度值相似性高斯函数确保只有与中心像素灰度值相近的才会被用来做模糊运算。所以这种方法会确保边界不会被模糊掉,因为边界处的灰度值变化比较大。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 双边滤波

img = cv2.imread('./resource/opencv/image/rubberwhale1.png', cv2.IMREAD_GRAYSCALE)

# 9:邻域直径,75:空间高斯函数标准差,75:灰度值相似性高斯函数标准差
dst1 = cv2.bilateralFilter(img, 9, 75, 75)

plt.subplot(121), plt.imshow(img, 'gray'), plt.title('origin')
plt.subplot(122), plt.imshow(dst1, 'gray'), plt.title('bilateralFiter')
plt.show()

Python-OpenCV中的图像处理-图像平滑,OpenCV Python,python,opencv,图像处理文章来源地址https://www.toymoban.com/news/detail-636509.html

到了这里,关于Python-OpenCV中的图像处理-图像平滑的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python-OpenCV中的图像处理-图像金字塔

    同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。 cv2.pyrUp():上采样 cv2.pyrDown():下采样 高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。顶部图像中的每个像素值等于下一层图

    2024年02月13日
    浏览(40)
  • Python-OpenCV中的图像处理-几何变换

    对图像进行各种几个变换,例如移动,旋转,仿射变换等。 cv2.resize() cv2.INTER_AREA v2.INTER_CUBIC v2.INTER_LINEAR res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) 或 height, width = img.shape[:2] res = cv2.resize(img, (2 width, 2 height), interpolation=cv2.INTER_CUBIC) OpenCV提供了使用函数cv2.warpAffine()实

    2024年02月13日
    浏览(49)
  • Python-OpenCV中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月13日
    浏览(31)
  • Python-OpenCV中的图像处理-边缘检测

    Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在 1986 年提出的。它是一个有很多步构成的算法:噪声去除、计算图像梯度、非极大值抑制、滞后阀值等。 Canny(image: Mat, threshold1, threshold2, edges=…, apertureSize=…, L2gradient=…) 在 OpenCV 中只需要一个函数: cv2.Canny(),

    2024年02月13日
    浏览(31)
  • Python-OpenCV中的图像处理-物体跟踪

    现在我们知道怎样将一幅图像从 BGR 转换到 HSV 了,我们可以利用这一点来提取带有某个特定颜色的物体。在 HSV 颜色空间中要比在 BGR 空间中更容易表示一个特定颜色。在我们的程序中,我们要提取的是一个蓝色的物体。下面就是就是我们要做的几步: • 从视频中获取每一帧

    2024年02月13日
    浏览(36)
  • Python-OpenCV中的图像处理-颜色空间转换

    在 OpenCV 中有超过 150 中进行颜色空间转换的方法。但是你以后就会 发现我们经常用到的也就两种: BGR G r a y 和 B G R Gray 和 BGR G r a y 和 BGR HSV。 注意:在 OpenCV 的 HSV 格式中, H(色彩/色度)的取值范围是 [0, 179],S(饱和度)的取值范围 [0, 255], V(亮度)的取值范围 [0,

    2024年02月13日
    浏览(22)
  • Python-OpenCV中的图像处理-直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月13日
    浏览(33)
  • Python-OpenCV中的图像处理-形态学转换

    形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等 主要涉及函数:cv2.erode(), cv2.dilate(), cv2.morphologyEx() 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化

    2024年02月13日
    浏览(38)
  • Python-OpenCV中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(43)
  • Python-OpenCV中的图像处理-GrabCut算法交互式前景提取

    cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode=…) img:输入图像 mask:掩模图像,用来确定那些区域是背景,前景,可能是前景/背景等。 可以设置为: cv2.GC_BGD,cv2.GC_FGD,cv2.GC_PR_BGD,cv2.GC_PR_FGD,或者直接输入 0,1,2,3 也行。 rect :包含前景的矩形,格式为

    2024年02月13日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包