yolov5目标检测多线程C++部署

这篇具有很好参考价值的文章主要介绍了yolov5目标检测多线程C++部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

C++多线程复习

下面的代码搭建了简单的一个生产者-消费者模型,在capture()函数中进行入队操作,infer()函数中进行出队操作,为了模拟采图-推理流程,在函数中调用Sleep()函数延时。

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <windows.h>

std::queue<std::string> jobs;

void capture()
{
	int id = 0;
	while (true)
	{
		std::string name = std::to_string(id++) + ".jpg";
		std::cout << "capture: " << name << " jobs.size():" << jobs.size() << std::endl;
		jobs.push(name);
		Sleep(1000);
	}
}

void infer()
{
	while (true)
	{
		if (!jobs.empty())
		{
			auto pic = jobs.front();
			jobs.pop();
			std::cout <<"infer: "<< pic << std::endl;
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}

输出结果:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
infer: 2.jpg
capture: 3.jpg jobs.size():0
infer: 3.jpg
capture: 4.jpg jobs.size():0
infer: 4.jpg
capture: 5.jpg jobs.size():0
infer: 5.jpg
capture: 6.jpg jobs.size():0
infer: 6.jpg
capture: 7.jpg jobs.size():0
infer: 7.jpg
capture: 8.jpg jobs.size():0
infer: 8.jpg
capture: 9.jpg jobs.size():0
infer: 9.jpg
capture: 10.jpg jobs.size():0
infer: 10.jpg
...

现在我们把capture函数中的Sleep(1000)改成Sleep(500)来模拟生产者加速生产,再次执行程序,则输出:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
capture: 3.jpg jobs.size():1
infer: 2.jpg
capture: 4.jpg jobs.size():1
capture: 5.jpg jobs.size():2
infer: 3.jpg
capture: 6.jpg jobs.size():2
capture: 7.jpg jobs.size():3
infer: 4.jpg
capture: 8.jpg jobs.size():3
capture: 9.jpg jobs.size():4
infer: 5.jpg
capture: 10.jpg jobs.size():4
...

此时发现采图-推理流程不能同步。为了解决这个问题,加入对队列长度的限制:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <windows.h>

std::queue<std::string> jobs;

const int limit = 3;

void capture()
{
	int id = 0;
	while (true)
	{
		std::string name = std::to_string(id++) + ".jpg";
		std::cout << "capture: " << name << " jobs.size():" << jobs.size() << std::endl;

		if(jobs.size()< limit)
			jobs.push(name);

		Sleep(500);
	}
}

void infer()
{
	while (true)
	{
		if (!jobs.empty())
		{
			auto pic = jobs.front();
			jobs.pop();
			std::cout <<"infer: "<< pic << std::endl;
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}

此时输出结果:

capture: 0.jpg jobs.size():0
infer: 0.jpg
capture: 1.jpg jobs.size():0
infer: 1.jpg
capture: 2.jpg jobs.size():0
capture: 3.jpg jobs.size():1
infer: 2.jpg
capture: 4.jpg jobs.size():1
capture: 5.jpg jobs.size():2
infer: 3.jpg
capture: 6.jpg jobs.size():2
capture: 7.jpg jobs.size():3
infer: 4.jpg
capture: 8.jpg jobs.size():2
capture: 9.jpg jobs.size():3
infer: 5.jpg
capture: 10.jpg jobs.size():2
...

由于std::queue不是线程安全的数据结构,故引入锁std::mutex:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>


std::queue<std::string> jobs;

std::mutex lock;


void capture()
{
	int id = 0;
	while (true)
	{
		{
			std::unique_lock<std::mutex> l(lock);
			std::string name = std::to_string(id++) + ".jpg";
			std::cout << "capture: " << name << " " << "jobs.size(): " << jobs.size() << std::endl;
		}

		Sleep(500);
	}
}

void infer()
{ 
	while (true)
	{
		if (!jobs.empty())
		{
			{
				std::lock_guard<std::mutex> l(lock);
				auto job = jobs.front();
				jobs.pop();
				std::cout << "infer: " << job << std::endl;
			}
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}

此时输出:

capture: 0.jpg jobs.size(): 0
capture: 1.jpg jobs.size(): 0
capture: 2.jpg jobs.size(): 0
capture: 3.jpg jobs.size(): 0
capture: 4.jpg jobs.size(): 0
capture: 5.jpg jobs.size(): 0
capture: 6.jpg jobs.size(): 0
capture: 7.jpg jobs.size(): 0
capture: 8.jpg jobs.size(): 0
capture: 9.jpg jobs.size(): 0
capture: 10.jpg jobs.size(): 0
...

有时候生产者还需要拿到消费者处理之后的结果,因此引入std::promise和std::condition_variable对程序进行完善:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>


struct Job
{
	std::string input;
	std::shared_ptr<std::promise<std::string>> pro;
};

std::queue<Job> jobs;

std::mutex lock;

std::condition_variable cv;

const int limit = 5;

void capture()
{
	int id = 0;
	while (true)
	{
		Job job;
		{
			std::unique_lock<std::mutex> l(lock);
			std::string name = std::to_string(id++) + ".jpg";
			std::cout << "capture: " << name << " " << "jobs.size(): " << qjobs.size() << std::endl;
			cv.wait(l, [&]() { return qjobs.size() < limit; });

			job.input = name;
			job.pro.reset(new std::promise<std::string>());
			jobs.push(job);
		}

		auto result = job.pro->get_future().get();
		std::cout << result << std::endl;

		Sleep(500);
	}
}

void infer()
{ 
	while (true)
	{
		if (!qjobs.empty())
		{
			{
				std::lock_guard<std::mutex> l(lock);
				auto job = jobs.front();
				jobs.pop();
				cv.notify_all();
				std::cout << "infer: " << job.input << std::endl;

				auto result = job.input + " after infer";
				job.pro->set_value(result);
			}
			Sleep(1000);
		}
	}
}


int main()
{
	std::thread t0(capture);
	std::thread t1(infer);

	t0.join();
	t1.join();

	return 0;
}

输出:

capture: 0.jpg jobs.size(): 0
infer: 0.jpg
0.jpg after infer
capture: 1.jpg jobs.size(): 0
infer: 1.jpg
1.jpg after infer
capture: 2.jpg jobs.size(): 0
infer: 2.jpg
2.jpg after infer
capture: 3.jpg jobs.size(): 0
infer: 3.jpg
3.jpg after infer
capture: 4.jpg jobs.size(): 0
infer: 4.jpg
4.jpg after infer
capture: 5.jpg jobs.size(): 0
infer: 5.jpg
5.jpg after infer
capture: 6.jpg jobs.size(): 0
infer: 6.jpg
6.jpg after infer
capture: 7.jpg jobs.size(): 0
infer: 7.jpg
7.jpg after infer
capture: 8.jpg jobs.size(): 0
infer: 8.jpg
8.jpg after infer
capture: 9.jpg jobs.size(): 0
infer: 9.jpg
9.jpg after infer
capture: 10.jpg jobs.size(): 0
infer: 10.jpg
10.jpg after infer
...

yolov5目标检测多线程C++部署

有了上面的基础,我们来写一个基本的目标检测多线程部署程序,为了简单起见选用OpenCV的dnn作为推理框架,出于篇幅限制下面只给出main.cpp部分:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs;

std::mutex lock;

std::condition_variable c_v;

const int limit = 10;

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job;
		cv::Mat frame;
		{
			cap.read(frame);
			if (frame.empty())
				break;

			std::unique_lock<std::mutex> l(lock);
			c_v.wait(l, [&]() { return jobs.size() < limit; });

			job.input_image = frame;
			job.output_image.reset(new std::promise<cv::Mat>());
			jobs.push(job);
		}

		cv::Mat result = job.output_image->get_future().get();

		cv::imshow("result", result);
	}
}

void infer(cv::dnn::Net net)
{ 
	while (true)
	{
		if (!jobs.empty())
		{
			std::lock_guard<std::mutex> l(lock);
			auto job = jobs.front();
			jobs.pop();
			c_v.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
		}
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");

	cv::dnn::Net net = cv::dnn::readNet("yolov5n.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer, net);

	t0.join();
	t1.join();

	return 0;
}

接下来我们模拟多个模型同时推理,先给出单线程串行的程序:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	cv::Mat frame;
	while (cv::waitKey(1) < 0)
	{
		clock_t start = clock();

		cap.read(frame);
		if (frame.empty())
			break;

		cv::Mat input_image = frame, blob;
		pre_process(input_image, blob);

		std::vector<cv::Mat> network_outputs1, network_outputs2;
		process(blob, net1, network_outputs1);
		process(blob, net2, network_outputs2);

		cv::Mat output_image1, output_image2;
		post_process(input_image, output_image1, network_outputs1);
		post_process(input_image, output_image2, network_outputs2);

		clock_t end = clock();
		std::cout << end - start << "ms" << std::endl;

		cv::imshow("result1", output_image1);
		cv::imshow("result2", output_image2);
	}

	return 0;
}

输出结果:

infer1+infer2:191ms
infer1+infer2:142ms
infer1+infer2:134ms
infer1+infer2:130ms
infer1+infer2:129ms
infer1+infer2:124ms
infer1+infer2:124ms
infer1+infer2:121ms
infer1+infer2:124ms
infer1+infer2:122ms
...

多线程并行的写法修改如下:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs1,jobs2;

std::mutex lock1, lock2;

std::condition_variable cv1, cv2;

const int limit = 10;

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job1, job2;
		cv::Mat frame;

		clock_t start = clock();

		cap.read(frame);
		if (frame.empty())
			break;

		{
			std::unique_lock<std::mutex> l1(lock1);
			cv1.wait(l1, [&]() { return jobs1.size() < limit; });

			job1.input_image = frame;
			job1.output_image.reset(new std::promise<cv::Mat>());
			jobs1.push(job1);
		}

		{
			std::unique_lock<std::mutex> l2(lock2);
			cv2.wait(l2, [&]() { return jobs2.size() < limit; });

			job2.input_image = frame;
			job2.output_image.reset(new std::promise<cv::Mat>());
			jobs2.push(job2);
		}

		cv::Mat result1 = job1.output_image->get_future().get();
		cv::Mat result2 = job2.output_image->get_future().get();

		clock_t end = clock();
		std::cout <<"capture: "<< end - start << "ms" << std::endl;

		cv::imshow("result1", result1);
		cv::imshow("result2", result2);
	}
}

void infer1(cv::dnn::Net net)
{ 
	while (true)
	{
		if (!jobs1.empty())
		{
			clock_t start = clock();

			std::lock_guard<std::mutex> l1(lock1);
			auto job = jobs1.front();
			jobs1.pop();
			cv1.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);

			clock_t end = clock();
			std::cout << "infer1: " << end - start << "ms" << std::endl;
		}
	}
}

void infer2(cv::dnn::Net net)
{
	while (true)
	{
		if (!jobs2.empty())
		{
			clock_t start = clock();

			std::lock_guard<std::mutex> l2(lock2);
			auto job = jobs2.front();
			jobs2.pop();
			cv2.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);

			clock_t end = clock();
			std::cout << "infer2: " << end - start << "ms" << std::endl;
		}
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test.mp4");
	//cap.open(0);

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer1, net1);
	std::thread t2(infer2, net2);

	t0.join();
	t1.join();
	t2.join();

	return 0;
}

输出:

infer1: 98ms
infer2: 136mscapture: 155ms

infer1: 80ms
infer2: 110ms
capture: 113ms
infer1: 92ms
infer2: 101mscapture: 103ms

infer1: 85ms
infer2: 97ms
capture: 100ms
infer1: 85ms
infer2: 100mscapture: 102ms
...

上面的程序还有一点小问题:视频播放完时程序无法正常退出。继续修正如下:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


struct Job
{
	cv::Mat input_image;
	std::shared_ptr<std::promise<cv::Mat>> output_image;
};

std::queue<Job> jobs1,jobs2;

std::mutex lock1, lock2;

std::condition_variable cv1, cv2;

const int limit = 10;

bool stop = false;

void print_time(int model_id)
{
	auto now = std::chrono::system_clock::now();
	uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
		- std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
	time_t tt = std::chrono::system_clock::to_time_t(now);
	auto time_tm = localtime(&tt);
	char time[100] = { 0 };
	sprintf(time, "%d-%02d-%02d %02d:%02d:%02d %03d", time_tm->tm_year + 1900,
		time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
		time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
	std::cout << "model_id:" << std::to_string(model_id) << " 当前时间为:" << time << std::endl;
}

void capture(cv::VideoCapture cap)
{
	while (cv::waitKey(1) < 0)
	{
		Job job1, job2;
		cv::Mat frame;

		cap.read(frame);
		if (frame.empty())
		{
			stop = true;
			break;
		}

		{
			std::unique_lock<std::mutex> l1(lock1);
			cv1.wait(l1, [&]() { return jobs1.size()<limit; });

			job1.input_image = frame;
			job1.output_image.reset(new std::promise<cv::Mat>());
			jobs1.push(job1);
		}

		{
			std::unique_lock<std::mutex> l2(lock2);
			cv2.wait(l2, [&]() { return  jobs2.size() < limit; });

			job2.input_image = frame;
			job2.output_image.reset(new std::promise<cv::Mat>());
			jobs2.push(job2);
		}

		cv::Mat result1 = job1.output_image->get_future().get();
		cv::Mat result2 = job2.output_image->get_future().get();

		cv::imshow("result1", result1);
		cv::imshow("result2", result2);
	}
}

void infer1(cv::dnn::Net net)
{ 
	while (true)
	{
		if (stop)
			break; //不加线程无法退出

		if (!jobs1.empty())
		{
			std::lock_guard<std::mutex> l1(lock1);
			auto job = jobs1.front();
			jobs1.pop();
			cv1.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
			print_time(1);
		}
		std::this_thread::yield(); //不加线程无法退出
	}
}

void infer2(cv::dnn::Net net)
{
	while (true)
	{
		if (stop)
			break;

		if (!jobs2.empty())
		{
			std::lock_guard<std::mutex> l2(lock2);
			auto job = jobs2.front();
			jobs2.pop();
			cv2.notify_all();

			cv::Mat input_image = job.input_image, blob, output_image;
			pre_process(input_image, blob);

			std::vector<cv::Mat> network_outputs;
			process(blob, net, network_outputs);

			post_process(input_image, output_image, network_outputs);

			job.output_image->set_value(output_image);
			print_time(2);
		}
		std::this_thread::yield();
	}
}


int main(int argc, char* argv[])
{
	cv::VideoCapture cap("test1.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t0(capture, cap);
	std::thread t1(infer1, net1);
	std::thread t2(infer2, net2);

	t0.join();
	t1.join();
	t2.join();

	return 0;
}

输出结果:

model_id:1 当前时间为:2023-08-10 22:30:41 540
model_id:2 当前时间为:2023-08-10 22:30:41 567
model_id:1 当前时间为:2023-08-10 22:30:41 832
model_id:2 当前时间为:2023-08-10 22:30:41 864
model_id:1 当前时间为:2023-08-10 22:30:41 961
model_id:2 当前时间为:2023-08-10 22:30:41 980
model_id:1 当前时间为:2023-08-10 22:30:42 057
model_id:2 当前时间为:2023-08-10 22:30:42 087
model_id:1 当前时间为:2023-08-10 22:30:42 183
model_id:2 当前时间为:2023-08-10 22:30:42 187
model_id:1 当前时间为:2023-08-10 22:30:42 264
model_id:2 当前时间为:2023-08-10 22:30:42 291
model_id:2 当前时间为:2023-08-10 22:30:42 379
model_id:1 当前时间为:2023-08-10 22:30:42 388
model_id:2 当前时间为:2023-08-10 22:30:42 476
model_id:1 当前时间为:2023-08-10 22:30:42 485
model_id:2 当前时间为:2023-08-10 22:30:42 571
model_id:1 当前时间为:2023-08-10 22:30:42 584
model_id:1 当前时间为:2023-08-10 22:30:42 659
model_id:2 当前时间为:2023-08-10 22:30:42 685
...

多个视频不同模型同时推理:

#include <iostream>
#include <string>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <windows.h>

#include "yolov5.h"


bool stop = false;

void print_time(std::string video)
{
	auto now = std::chrono::system_clock::now();
	uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
		- std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
	time_t tt = std::chrono::system_clock::to_time_t(now);
	auto time_tm = localtime(&tt);
	char time[100] = { 0 };
	sprintf(time, "%d-%02d-%02d %02d:%02d:%02d %03d", time_tm->tm_year + 1900,
		time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
		time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
	std::cout << "infer " << video << " 当前时间为:" << time << std::endl;
}

void capture(std::string video, cv::dnn::Net net)
{
	cv::VideoCapture cap(video);
	while (cv::waitKey(1) < 0)
	{
		cv::Mat frame;
		cap.read(frame);

		if (frame.empty())
		{
			stop = true;
			break;
		}

		cv::Mat input_image = frame, blob, output_image;
		pre_process(input_image, blob);

		std::vector<cv::Mat> network_outputs;
		process(blob, net, network_outputs);

		post_process(input_image, output_image, network_outputs);

		print_time(video);
		cv::imshow(video, output_image);
	}
}


int main(int argc, char* argv[])
{
	std::string video1("test1.mp4");
	std::string video2("test2.mp4");

	cv::dnn::Net net1 = cv::dnn::readNet("yolov5n.onnx");
	cv::dnn::Net net2 = cv::dnn::readNet("yolov5s.onnx");

	std::thread t1(capture, video1, net1);
	std::thread t2(capture, video2, net2);

	t1.join();
	t2.join();

	return 0;
}

推理效果如下:
yolov5目标检测多线程C++部署,# object detection,# model deployment,# 3D deep learning,YOLO,目标检测,c++,多线程
完整工程下载链接:yolov5目标检测多线程C++部署
在下一篇文章yolov5目标检测多线程Qt界面中,我们会制作Qt界面来显示处理的结果。文章来源地址https://www.toymoban.com/news/detail-636571.html

到了这里,关于yolov5目标检测多线程C++部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • yolov5目标检测多线程Qt界面

    上一篇文章:yolov5目标检测多线程C++部署 mainwindow.h mainwindow.cpp 这里引入的第三方库moodycamel::ConcurrentQueue是一个用C++11实现的多生产者、多消费者无锁队列。 程序输出: 界面效果: 可以看到,上面的程序实现了两个模型的多线程推理,但由于不同模型推理速度有差异,导致画

    2024年02月13日
    浏览(47)
  • YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本

    使用yolov5-lite自带的export.py导出onnx格式,图像大小设置320,batch 1 之后可以使用 onnxsim对模型进一步简化 onnxsim参考链接:onnxsim-让导出的onnx模型更精简_alex1801的博客-CSDN博客 这个版本的推理FPS能有11+FPS 这两处换成自己的模型和训练的类别即可:     parser.add_argument(\\\'--modelpa

    2024年02月04日
    浏览(52)
  • yolov5实现目标检测系统(使用线程池)

    该系统包含以下几个部分: 从摄像头中读取数据 主线程将数据输出到窗口 后台线程完成计算机视觉的目标检测过程,并且将结果共享给主线程 主线程将结果画在输出图像上 下载yolvo5: YOLOv5的源码放在 Github 地址:https://github.com/ultralytics/yolov5 我使用到的是 yolov5s.pt,yolvo5学习

    2024年02月16日
    浏览(42)
  • [深度学习]Open Vocabulary Object Detection 部署开放域目标检测模型使用感受

    Open Vocabulary Object Detection (OpenVOD) 是一种新型的目标检测方法,它使用开放词汇的概念来识别和检测图像中的对象。与传统的目标检测方法相比,OpenVOD具有更高的灵活性和可扩展性,因为它允许用户自定义对象类别和词汇,从而能够适应各种不同的应用场景和需求。 OpenVOD的核

    2024年01月22日
    浏览(53)
  • 【目标检测】YOLOv5多进程/多线程推理加速实验

    最近在研究如何让YOLOv5推理得更快,总体看来,主要有以下这些思路: 使用更快的 GPU,即:P100 - V100 - A100 多卡GPU推理 减小模型尺寸,即YOLOv5x - YOLOv5l - YOLOv5m - YOLOv5s - YOLOv5n 进行半精度FP16推理与 python detect.py --half 减少–img-size,即 1280 - 640 - 320 导出成 ONNX 或 OpenVINO 格式,获

    2023年04月14日
    浏览(44)
  • 【目标检测——YOLO系列】YOLOv1 —《You Only Look Once: Unified, Real-Time Object Detection》

    论文地址:1506.02640] You Only Look Once: Unified, Real-Time Object Detection (arxiv.org) 代码地址:pjreddie/darknet: Convolutional Neural Networks (github.com) YOLOv1是一种end to end目标检测算法,由Joseph Redmon等人于2015年提出。它是一种基于单个神经网络的实时目标检测算法。 YOLOv1的中文名称是\\\"你只看一

    2024年02月08日
    浏览(47)
  • 【目标检测算法实现之yolov5】 一、YOLOv5环境配置,将yolov5部署到远程服务器上

    在官网:https://github.com/ultralytics/yolov5上下载yolov5源代码 下载成功如下: 在配置基础环境之前,提前压缩自己的代码文件,并通过winscp传输给linux端,传输之后,解压该文件。解压前,先创建一个文件夹,再解压。 winscp下载使用教程参考上一篇博客:使用WinSCP下载和文件传输

    2024年01月15日
    浏览(55)
  • 改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)

    2022.10.30 复现TPH-YOLOv5 2022.10.31 完成替换backbone为Ghostnet 2022.11.02 完成替换backbone为Shufflenetv2 2022.11.05 完成替换backbone为Mobilenetv3Small 2022.11.10 完成EagleEye对YOLOv5系列剪枝支持 2022.11.14 完成MQBench对YOLOv5系列量化支持 2022.11.16 完成替换backbone为EfficientNetLite-0 2022.11.26 完成替换backbone为

    2024年01月17日
    浏览(71)
  • c++读取yolov5模型进行目标检测(读取摄像头实时监测)

    文章介绍 本文是篇基于yolov5模型的一个工程,主要是利用c++将yolov5模型进行调用并测试,从而实现目标检测任务 任务过程中主要重点有两个,第一 版本问题,第二配置问题 一,所需软件及版本       训练部分 pytorch==1.13.0  opencv==3.4.1   其他的直接pip即可       c++部署 

    2024年02月07日
    浏览(45)
  • 目标检测(Object Detection)

    计算机视觉的五大应用 物体识别是要分辨出图片中有什么物体,输入是图片,输出是类别标签和概率。物体检测算法不仅要检测图片中有什么物体,还要输出物体的外框(x, y, width, height)来定位物体的位置。 object detection,就是在给定的图片中精确找到物体所在位置,并标注

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包