监控Elasticsearch的关键指标

这篇具有很好参考价值的文章主要介绍了监控Elasticsearch的关键指标。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Elasticsearch 的核心职能就是对外提供搜索服务,所以搜索请求的吞吐和延迟是非常关键的,搜索是靠底层的索引实现的,所以索引的性能指标也非常关键,Elasticsearch 由一个或多个节点组成集群,集群自身是否健康也是需要我们监控的。

lasticSearch 的架构非常简单,一个节点就可以对外提供服务,不过单点的集群显然有容灾问题,如果挂掉了就万事皆休了。一般生产环境,至少搭建一个三节点的集群。

监控Elasticsearch的关键指标,监控,运维,elasticsearch,搜索引擎,监控

 三个节点分别部署三个 Elasticsearch 进程,这三个进程把 cluster.name 都设置成相同的值,就可以组成一个集群。Elasticsearch 会自动选出一个 master 节点,负责管理集群范围内所有的变更,整个选主过程是自动的,不用我们操心。

架构图里绿色的 P0、P1、P2 表示三个分片,R0、R1、R2 代表分片副本,每个分片有两个副本,也就是说 P0 对应两个 R0,P1 对应两个 R1,P2 对应两个 R2。这些分片和副本是否成功分配到 Node 上并落盘写入,也是一个重要的监控指标。

索引部分是最关键的:

  • docs 统计了文档的数量,包括还没有从段(segments)里清除的已删除文档数量。
  • shard_stats 统计了分片的数量。
  • store 统计了存储的情况,包括主分片和副本分片总共耗费了多少物理存储。
  • indexing 是统计索引过程,ES 的架构里,索引是非常关键的一个东西,索引的吞吐和耗时都应该密切关注,index_total 和 index_time_in_millis 都是 Counter 类型的指标,单调递增。如果要求取最近一分钟的索引数量和平均延迟,就需要使用 increase 函数求增量。
  • search 描述在活跃中的搜索(open_contexts)数量、查询的总数量,以及自节点启动以来在查询上消耗的总时间。
  • fetch 统计值展示了查询处理的后一半流程,也就是 query-then-fetch 里的 fetch 部分。如果 fetch 耗时比 query 还多,说明磁盘较慢,可能是获取了太多文档,或者搜索请求设置了太大的分页。
  • merges 包括了 Lucene 段合并相关的信息。它会告诉你目前在运行几个合并,合并涉及的文档数量,正在合并的段的总大小,以及在合并操作上消耗的总时间。合并要消耗大量的磁盘 I/O 和 CPU 资源,如果 merge 操作耗费太多资源,也会被限制,即 total_throttled_time_in_millis 指标。

Elasticsearch 暴露指标的方式非常简单,就是几个 HTTP 接口,返回 JSON 数据,直接拉取解析即可,比 JMX 方式简单得多。我们要关注的核心是 /_cluster/health 和 /_nodes/stats 这两个接口,一个用来获取整个集群的监控数据,一个用来获取节点粒度的监控数据。 /_nodes/stats 接口返回的数据非常丰富,不但有索引类指标,还有 OS、JVM、Process、ThreadPool 指标,重点关注索引相关的指标和 JVM 相关的指标。

监控Elasticsearch的关键指标,监控,运维,elasticsearch,搜索引擎,监控

 

此文章为8月Day9学习笔记,内容来源于极客时间《运维监控系统实战笔记》,推荐该课程。文章来源地址https://www.toymoban.com/news/detail-636574.html

到了这里,关于监控Elasticsearch的关键指标的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch集群关键指标及调优指南【全网最全】

    CPU使用率是指在一段时间内CPU执行程序的百分比,它是衡量系统资源利用率的一种指标。 1.1 详细说明: 在Elasticsearch中,高的CPU使用率通常意味着节点正在执行大量的计算任务,这可能是因为索引和搜索操作的负载较大,也可能是因为节点正在进行数据复制和分片重新平衡等

    2023年04月18日
    浏览(47)
  • ElasticSearch+Kibana+Logstash实现日志可视化运维监控

    1.目标 1.安装ElasticSearch 2.安装Kibana 3.安装Logstash采集/var/log/messages日志内容 4.图表化展示日志监控结果 2.版本 这三者的版本号要完全一样 ElasticSearch 6.1.1 Kibana 6.1.1 Logstash 6.1.1 Jdk1.8.0_181 3.安装ElasticSearch 安装包:https://cloud.189.cn/t/zuQz6v2YZRVb (访问码:6sbf) 下载网站:https://www.elast

    2024年02月10日
    浏览(56)
  • Prometheus监控运维实战十: 主机监控指标

    1、CPU指标 CPU负载 以上三个指标为主机的CPU平均负载,分别对应一分钟、五分钟和十五分钟的时间间隔。CPU负载是指某段时间内占用CPU时间的进程和等待CPU时间的进程数之和。一般来说,cpu负载数/cpu核数如果超过0.7,应该开始关注机器性能情况 ,如果超过1的话,运维人员应

    2024年02月06日
    浏览(49)
  • 监控Redis的关键指标

    Redis 也是一个对外服务,所以 Google 的四个黄金指标同样适用于 Redis。 1、延迟 在软件工程架构中,之所以选择 Redis 作为技术堆栈的一员,大概率是想要得到更快的响应速度和更高的吞吐量,所以延迟数据对使用 Redis 的应用程序至关重要。 客户端应用程序埋点。比如某个

    2024年02月13日
    浏览(46)
  • 监控Kafka的关键指标

    Kafka 架构  上面绿色部分 PRODUCER(生产者)和下面紫色部分 CONSUMER(消费者)是业务程序,通常由研发人员埋点解决监控问题,如果是 Java 客户端也会暴露 JMX 指标。组件运维监控层面着重关注蓝色部分的 BROKER(Kafka 节点)和红色部分的 ZOOKEEPER。 ZooKeeper 也是 Java 语言写的,

    2024年02月13日
    浏览(30)
  • 监控Kubernetes Node组件的关键指标

    所有的 Kubernetes 组件,都提供了 /metrics 接口用来暴露监控数据,Kube-Proxy 也不例外。通过  ss  或者  netstat  命令可以看到 Kube-Proxy 监听的端口,一个是 10249,用来暴露监控指标,一个是 10256 ,作为健康检查的端口,一般我们只关注前一个端口。 1、Kube-Proxy 关键指标 1、通用

    2024年02月13日
    浏览(36)
  • MySQL性能监控全掌握,快来get关键指标及采集方法!

    数据库中间件监控实战,MySQL中哪些指标比较关键以及如何采集这些指标了。帮助提早发现问题,提升数据库可用性。 监控哪类指标? 如何采集数据? 第10讲监控方法论如何落地? 这些就可以在MySQL中应用起来。MySQL是个服务,所以可借用Google四个黄金指标解决问题: 1.1 延

    2024年02月02日
    浏览(44)
  • 分布式搜索引擎ElasticSearch——深入elasticSearch

    聚合的分类 DSL实现Bucket聚合 DSL实现Metric聚合 RestAPI实现聚合 https://github.com/medcl/elasticsearch-analysis-pinyin DSL实现自动补全查询 Completion Suggester 修改酒店索引库数据结构 RestAPI实现自动补全查询 实现酒店搜索页面输入框的自动补全 数据同步思路分析 利用MQ实现mysql与elasticsearch数

    2024年01月17日
    浏览(47)
  • 【ElasticSearch】深入了解 ElasticSearch:开源搜索引擎的力量

    在信息时代,数据的增长速度之快让我们迅速感受到了信息爆炸的挑战。在这个背景下,搜索引擎成为了我们处理海量数据的得力工具之一。而 ElasticSearch 作为一款强大的开源搜索引擎,不仅能够高效地存储和检索数据,还在日志分析、实时监控等领域展现了其卓越的性能。

    2024年02月08日
    浏览(61)
  • Elasticsearch:使用 Elasticsearch 和 BERT 构建搜索引擎 - TensorFlow

    在本文中,我们使用预训练的 BERT 模型和 Elasticsearch 来构建搜索引擎。 Elasticsearch 最近发布了带有向量场的文本相似性(text similarity search with vector field)搜索。 另一方面,你可以使用 BERT 将文本转换为固定长度的向量。 因此,一旦我们将文档通过 BERT 转换为向量并存储到

    2024年02月07日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包